Révision 256 CSL17/tech-report/arithmetic.tex
arithmetic.tex (revision 256) | ||
---|---|---|
45 | 45 |
|
46 | 46 |
Apart from these, the remaining $\basic$ axioms mimic those of Buss in \cite{Buss86book}: |
47 | 47 |
|
48 |
\input{appendix-arithmetic} |
|
48 |
$$ |
|
49 |
%\begin{equation} |
|
50 |
\begin{array}{l} |
|
51 |
\forall x^{\safe}, y^{\safe}. (y\leq x\cimp y \leq \succ{} x) \\ |
|
52 |
\forall x^{\safe}. x \neq \succ{} x\\ |
|
53 |
\forall x^{\safe}.0 \leq x\\ |
|
54 |
\forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) \\ |
|
55 |
\forall x^{\safe}. (x\neq 0 \cimp \succ{0}x \neq 0)\\ |
|
56 |
\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)\\ |
|
57 |
\forall x^{\safe}, y^{\safe}. ((x\leq y \cand y\leq x )\cimp x=y)\\ |
|
58 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)\\ |
|
59 |
|0|=0\\ |
|
60 |
\forall x^{\safe}, y^{\safe}.( x\neq 0 \cimp (|\succ{0}x|=\succ{}( |x|) \cand |\succ{1}x|= \succ{}(|x|))) \\ |
|
61 |
|\succ{}0|=\succ{} 0\\ |
|
62 |
\forall x^{\safe}, y^{\safe}. (x\leq y \cimp |x|\leq |y|)\\ |
|
63 |
\forall x^{\normal}, y^{\normal}. |x\smsh y|=\succ{}( |x|\cdot |y|)\\ |
|
64 |
\forall y^{\normal}. 0 \smsh y=\succ{} 0\\ |
|
65 |
\forall x^{\normal}. (x\neq 0 \cimp (1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)))\\ |
|
66 |
\forall x^{\normal}, y^{\normal}. x \smsh y = y \smsh x\\ |
|
67 |
\forall x^{\normal}, y^{\normal}, z^{\normal}. ( |x|= |y| \cimp x\smsh z = y\smsh z)\\ |
|
68 |
\forall x^{\normal}, u^{\normal}, v^{\normal}, y^{\normal}. (|x|= |u|+ |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y))\\ |
|
69 |
\forall x^{\safe}, y^{\safe}. x\leq x+y\\ |
|
70 |
\forall x^{\safe}, y^{\safe}. ( ( x\leq y \cand x\neq y) \cimp( \succ{}(\succ{0}x) \leq \succ{0}y \cand \succ{}(\succ{0}x) \neq \succ{0}y))\\ |
|
71 |
\forall x^{\safe}, y^{\safe}. x+y=y+x\\ |
|
72 |
\forall x^{\safe}. x+0=x\\ |
|
73 |
\forall x^{\safe}, y^{\safe}. x+\succ{}y=\succ{}(x+y)\\ |
|
74 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. (x+y)+z=x+(y+z)\\ |
|
75 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. ( x+y \leq x+z \ciff y\leq z)\\ |
|
76 |
\forall x^{\safe} 0\cdot x =0\\ |
|
77 |
\forall x^{\normal}, y^{\safe}. x\cdot(\succ{}y)=(x\cdot y)+x\\ |
|
78 |
\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x\\ |
|
79 |
\forall x^{\normal}, y^{\safe}, z^{\safe}. x\cdot(y+z)=(x\cdot y)+(x\cdot z)\\ |
|
80 |
\forall x^{\normal}, y^{\safe}, z^{\safe}. (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))\\ |
|
81 |
\forall x^{\normal} . (x\neq 0 \cimp |x|=\succ{}(\hlf{x}))\\ |
|
82 |
\forall x^{\safe}, y^{\safe}. ( x= \hlf{y} \ciff (\succ{0}x=y \cor \succ{}(\succ{0}x)=y)) |
|
83 |
\end{array} |
|
84 |
%\end{equation} |
|
85 |
$$ |
|
49 | 86 |
|
87 |
|
|
88 |
|
|
89 |
|
|
90 |
|
|
91 |
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic: |
|
92 |
\begin{proposition} |
|
93 |
[Length induction] |
|
94 |
The axiom schema of formulae, |
|
95 |
\begin{equation} |
|
96 |
\label{eqn:lind} |
|
97 |
( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|) |
|
98 |
\end{equation} |
|
99 |
for formulae $A \in \Sigma^\safe_i$ |
|
100 |
is equivalent to $\cpind{\Sigma^\safe_i}$. |
|
101 |
\end{proposition} |
|
102 |
\begin{proof} |
|
103 |
Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$. |
|
104 |
Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$. |
|
105 |
\end{proof} |
|
106 |
|
|
107 |
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\Xi}$, when $A \in \mathcal \Xi$. |
|
108 |
We will freely use this in place of polynomial induction whenever it is convenient. |
|
109 |
|
|
50 | 110 |
%\begin{definition} |
51 | 111 |
% [Basic theory] |
52 | 112 |
% The theory $\basic$ consists of the axioms from Appendix \ref{appendix:arithmetic}. |
Formats disponibles : Unified diff