Statistiques
| Révision :

root / CSL17 / tech-report / completeness.tex @ 256

Historique | Voir | Annoter | Télécharger (3,35 ko)

1 251 adas
\section{Completeness}\label{sect:completeness}
2 251 adas
We now turn to proving the converse result to the last section, that our theories $\arith^i$ are strong enough to represent any $\fphi i $ function.
3 251 adas
The main result of this section is the following:
4 251 adas
5 251 adas
\begin{theorem}
6 251 adas
	\label{thm:completeness}
7 251 adas
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$.
8 251 adas
\end{theorem}
9 251 adas
\begin{proof}[Proof sketch]
10 251 adas
 The proof proceeds by induction on the construction of $\mubci{i-1}$ program $f(\vec u ; \vec x)$ to construct a suitable formula $A_f(\vec u, \vec x)$ .  The case of initial functions is easy, by using the formulas we gave in Sect. \ref{sect:graphsbasicfunctions}. The case of safe composition is also simple, and makes use of the $\rais$ rule and simply combines previously defined graphs by \emph{modus ponens} (or, equivalently, $\cut$) and logical steps.
11 251 adas
 Naturally, the interesting cases are predicative recursion and predicative minimisation.
12 251 adas
13 251 adas
 For predicative recursion, the basic idea is to follow the classical simulation of primitive recursion in arithmetic, adapted to recursion on notation, by encoding the sequence of recursive calls as an integer $w$.
14 251 adas
 The main technical difficulty is the representation of (de)coding functions $\beta (k, x)$ (``the $k$th element of the sequence $x$'') and $\langle x,y \rangle$ (``the pair $(x,y)$'').
15 251 adas
 For this we represent instead the length-bounded variants of these functions given towards the end of Sect.~\ref{sect:prelims}, relying on the bounded minimisation and polychecking results, Lemmas~\ref{lem:bounded-minimisation} and \ref{lem:polychecking}, to find appropriate length bounds.
16 251 adas
%  which is sorted in a suitable way so that the formula $A_f$  is in the same class $\Sigma^{\safe}_i$ as $A_g$,  $A_{h_0}$ and $A_{h_1}$.  This can be obtained by defining  the predicate $\beta (k, w, y)$ with $k$ in $\normal$ and $w$, $y$ in $\safe$.
17 251 adas
18 251 adas
19 251 adas
 For predicative minimisation, assume $f$ is defined as  $\succ 1 \mu x .( g(\vec u ; \vec x , x) =_2 0)$ (or $0$ if no such $x$ exists).
20 251 adas
  By induction hypothesis we have a $\Sigma^{\safe}_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$  satisfying the property. We then define $A_f(\vec u ; \vec x , z)$ as the following $\Sigma^{\safe}_{i}$ formula:
21 251 adas
\[
22 251 adas
\begin{array}{rl}
23 251 adas
&\left(
24 251 adas
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)
25 251 adas
\right) \\
26 251 adas
\cor & \left(
27 251 adas
\begin{array}{ll}
28 251 adas
z\neq 0
29 251 adas
& \cand\   \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\
30 251 adas
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1)
31 251 adas
\end{array}
32 251 adas
\right)
33 251 adas
\end{array}
34 251 adas
\]
35 251 adas
As for the analogous bounded arithmetic theory $S^i_2$ (\cite{Buss86book}, Thm 20, p. 58),  $\arith^i$ can prove a \emph{minimisation} principle for $\Sigma^\safe_{i-1}$ formulas, allowing us to extract the \emph{least} witness of a safe existential, which we apply to $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$. From here we are able to readily prove the totality of $A_f(\vec u ; \vec x , z)$, notably relying crucially on classical reasoning.
36 251 adas
\end{proof}
37 251 adas
38 251 adas
39 251 adas
40 251 adas
41 251 adas
42 251 adas
43 251 adas
44 251 adas
45 251 adas
46 251 adas
47 251 adas
48 251 adas
49 251 adas
50 251 adas
51 251 adas
52 251 adas
53 251 adas
54 251 adas
55 251 adas
56 251 adas