Statistiques
| Révision :

root / CSL17 / tech-report / arithmetic.tex @ 256

Historique | Voir | Annoter | Télécharger (23,41 ko)

1 251 adas
\section{An arithmetic for the polynomial hierarchy}\label{sect:arithmetic}
2 251 adas
%Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$.
3 251 adas
Our base language consists of constant and function symbols $\{ 0, \succ{} , + , \times, \smsh , |\cdot|, \hlf{}.\}$ and predicate symbols
4 251 adas
 $\{\leq, \safe, \normal \}$. The function symbols are interpreted in the intuitive way, with $|x|$ denoting the length of $x$ seen as a binary string, and $x\smsh y$ denoting $2^{|x||y|}$, so a string of length $|x||y|+1$.
5 251 adas
 We may write $\succ{0}(x)$ for $2\cdot x$, $\succ{1}(x)$ for $\succ{}(2\cdot x)$, and $\pred (x)$ for $\hlf{x}$, to better relate to the $\bc$ setting.
6 251 adas
7 251 adas
We consider formulas of classical first-order logic, over $\neg$, $\cand$, $\cor$, $\forall$, $\exists$, along with usual shorthands and abbreviations.
8 251 adas
%The formula $A \cimp B$ will be a notation for $\neg A \cor B$.
9 251 adas
%We will also use as shorthand notations:
10 251 adas
%$$ (s=t) = (s\leq t) \cand (t\leq s), \quad (s\neq t) = \neg(s=t).$$
11 251 adas
\textit{Atomic formulas} formulas are of the form $s\leq t$, for terms $s,t$.
12 251 adas
 We will assume, without loss of generality, that formulas are in \textit{De Morgan normal form}, that is to say that in formulas negation can only occur on atomic formulas, and that there is not any occurrence of a subformula of the form $\neg \neg A$.
13 251 adas
14 251 adas
15 251 adas
 We write $\exists x^{N_i} . A$ or $\forall x^{N_i} . A$ for $\exists x . (N_i (x) \cand A)$ and $\forall x . (N_i (x) \cimp A)$ respectively. We refer to  $\exists x^{N_0}$,  $\forall x^{N_0}$ as \emph{safe} quantifiers.
16 251 adas
 We also write $\exists x^\normal \leq |t| . A$ for $\exists x^\normal . ( x \leq |t| \cand A )$ and $\forall x^\normal \leq |t|. A $ for $\forall x^\normal. (x \leq |t| \cimp A )$. We refer to these as \emph{sharply bounded} quantifiers, as in bounded arithmetic.
17 251 adas
18 251 adas
19 251 adas
The theories we introduce are directly inspired from bounded arithmetic, namely the theories $S^i_2$.
20 251 adas
We include a similar set of axioms for direct comparison, although in our setting these are not minimal.
21 251 adas
Indeed, $\#$ can be defined using induction in our setting.
22 251 adas
23 251 adas
The $\basic$ axioms of bounded arithmetic give the inductive definitions and interrelationships of the various function and predicate symbols.
24 251 adas
It also states fundamental algebraic properties, e.g.\ $(0,\succ{ } )$ is a free algebra, and, for us, it will also give us certain `typing' information for our function symbols based on their $\bc$ specification, with safe inputs ranging over $\safe$ and normal ones over $\normal$.
25 251 adas
For instance, we include the following axioms:\footnote{Later some of these will be redundant, for instance $\safe (u \times x) $ and $\safe (u \smsh v)$ are consequences of $\Sigma^\safe_i$-$\pind$, but $\safe (x + y)$ is not since both inputs are safe and so we cannot induct.}
26 251 adas
\[
27 251 adas
\begin{array}{l}
28 251 adas
\forall u^\normal. \safe(u) \\
29 251 adas
\safe (0) \\
30 251 adas
\forall x^\safe . \safe (\succ{} x) \\
31 251 adas
\forall x^\safe . 0 \neq \succ{} (x) \\
32 251 adas
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
33 251 adas
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )
34 251 adas
\end{array}
35 251 adas
\qquad
36 251 adas
\begin{array}{l}
37 251 adas
\forall x^\safe, y^\safe . \safe(x+y)\\
38 251 adas
\forall u^\normal, x^\safe . \safe(u\times x) \\
39 251 adas
\forall u^\normal , v^\normal . \safe (u \smsh v)\\
40 251 adas
\forall u^\safe .\safe(\hlf{u})\\
41 251 adas
\forall u^\normal .\safe(|x|)
42 251 adas
\end{array}
43 251 adas
\]
44 251 adas
Notice that we have $\normal \subseteq \safe$.
45 251 adas
46 254 adas
Apart from these, the remaining $\basic$ axioms mimic those of Buss in \cite{Buss86book}:
47 254 adas
48 256 adas
$$
49 256 adas
%\begin{equation}
50 256 adas
\begin{array}{l}
51 256 adas
\forall x^{\safe}, y^{\safe}.  (y\leq x\cimp  y \leq \succ{} x) \\
52 256 adas
\forall x^{\safe}. x \neq \succ{} x\\
53 256 adas
\forall x^{\safe}.0 \leq x\\
54 256 adas
\forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) \\
55 256 adas
\forall x^{\safe}. (x\neq 0 \cimp \succ{0}x \neq 0)\\
56 256 adas
\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)\\
57 256 adas
\forall x^{\safe}, y^{\safe}. ((x\leq y \cand y\leq x )\cimp x=y)\\
58 256 adas
\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)\\
59 256 adas
|0|=0\\
60 256 adas
\forall x^{\safe}, y^{\safe}.( x\neq 0 \cimp  (|\succ{0}x|=\succ{}( |x|) \cand |\succ{1}x|= \succ{}(|x|))) \\
61 256 adas
|\succ{}0|=\succ{} 0\\
62 256 adas
\forall x^{\safe}, y^{\safe}.   (x\leq y \cimp   |x|\leq  |y|)\\
63 256 adas
\forall x^{\normal}, y^{\normal}.    |x\smsh y|=\succ{}( |x|\cdot  |y|)\\
64 256 adas
\forall y^{\normal}.    0 \smsh y=\succ{} 0\\
65 256 adas
\forall x^{\normal}.    (x\neq 0 \cimp (1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)))\\
66 256 adas
\forall x^{\normal}, y^{\normal}.    x \smsh y = y \smsh x\\
67 256 adas
\forall x^{\normal}, y^{\normal}, z^{\normal}. (   |x|= |y| \cimp x\smsh z = y\smsh z)\\
68 256 adas
\forall x^{\normal}, u^{\normal}, v^{\normal}, y^{\normal}.      (|x|= |u|+  |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y))\\
69 256 adas
\forall x^{\safe}, y^{\safe}.      x\leq x+y\\
70 256 adas
\forall x^{\safe}, y^{\safe}.    (  ( x\leq y \cand x\neq y) \cimp( \succ{}(\succ{0}x) \leq \succ{0}y \cand  \succ{}(\succ{0}x) \neq \succ{0}y))\\
71 256 adas
\forall x^{\safe}, y^{\safe}.     x+y=y+x\\
72 256 adas
\forall x^{\safe}.       x+0=x\\
73 256 adas
\forall x^{\safe}, y^{\safe}.       x+\succ{}y=\succ{}(x+y)\\
74 256 adas
\forall x^{\safe}, y^{\safe}, z^{\safe}.      (x+y)+z=x+(y+z)\\
75 256 adas
\forall x^{\safe}, y^{\safe}, z^{\safe}. (    x+y \leq x+z \ciff y\leq z)\\
76 256 adas
\forall x^{\safe}       0\cdot x =0\\
77 256 adas
\forall x^{\normal}, y^{\safe}.  x\cdot(\succ{}y)=(x\cdot y)+x\\
78 256 adas
\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x\\
79 256 adas
\forall x^{\normal}, y^{\safe}, z^{\safe}.  x\cdot(y+z)=(x\cdot y)+(x\cdot z)\\
80 256 adas
\forall x^{\normal}, y^{\safe}, z^{\safe}.      (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))\\
81 256 adas
\forall x^{\normal}  .     (x\neq 0 \cimp  |x|=\succ{}(\hlf{x}))\\
82 256 adas
\forall x^{\safe}, y^{\safe}.   (  x= \hlf{y} \ciff (\succ{0}x=y \cor \succ{}(\succ{0}x)=y))
83 256 adas
\end{array}
84 256 adas
%\end{equation}
85 256 adas
$$
86 254 adas
87 256 adas
88 256 adas
89 256 adas
90 256 adas
91 256 adas
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic:
92 256 adas
\begin{proposition}
93 256 adas
	[Length induction]
94 256 adas
	The axiom schema of formulae,
95 256 adas
	\begin{equation}
96 256 adas
	\label{eqn:lind}
97 256 adas
	( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|)
98 256 adas
	\end{equation}
99 256 adas
	for formulae $A \in \Sigma^\safe_i$
100 256 adas
	is equivalent to $\cpind{\Sigma^\safe_i}$.
101 256 adas
\end{proposition}
102 256 adas
\begin{proof}
103 256 adas
	Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$.
104 256 adas
	Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$.
105 256 adas
\end{proof}
106 256 adas
107 256 adas
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\Xi}$, when $A \in \mathcal \Xi$.
108 256 adas
We will freely use this in place of polynomial induction whenever it is convenient.
109 256 adas
110 251 adas
%\begin{definition}
111 251 adas
%	[Basic theory]
112 251 adas
%	The theory $\basic$ consists of the axioms from Appendix \ref{appendix:arithmetic}.
113 251 adas
%	\end{definition}
114 251 adas
115 251 adas
116 251 adas
%Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$.
117 251 adas
118 251 adas
%\begin{definition}
119 251 adas
%[Derived functions and notations]
120 251 adas
%We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
121 251 adas
%We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
122 251 adas
%
123 251 adas
%Need $bit$, $\beta$ , $\pair{}{}{}$.
124 251 adas
%\end{definition}
125 251 adas
%
126 251 adas
%(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
127 251 adas
%
128 251 adas
%Use base theory + sharply bounded quantifiers.
129 251 adas
130 251 adas
131 251 adas
\begin{definition}
132 251 adas
[Quantifier hierarchy]
133 251 adas
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded and where $\safe , \normal$ do not occur free.
134 251 adas
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
135 251 adas
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
136 251 adas
\end{definition}
137 251 adas
138 251 adas
139 251 adas
Notice that the criterion that $\safe$ does not occur free is not a real restriction, since we can write $\safe (x)$ as $\exists y^\safe . y=x$.
140 251 adas
The criterion is purely to give an appropriate definition of the hierarchy above.
141 251 adas
142 251 adas
%\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
143 251 adas
144 251 adas
145 251 adas
\begin{definition}
146 251 adas
[Polynomial induction]
147 251 adas
\label{def:polynomialinduction}
148 251 adas
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms, for each formula $A(x)$:
149 251 adas
\[
150 251 adas
\left(
151 251 adas
A(0)
152 251 adas
\cand (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
153 251 adas
\cand  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
154 251 adas
\right)
155 251 adas
\cimp  \forall x^{\normal} . A(x)
156 251 adas
\]
157 251 adas
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of $\pind$ axioms where $A(x) \in \Xi$.
158 251 adas
159 251 adas
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
160 251 adas
\end{definition}
161 251 adas
162 251 adas
163 251 adas
\begin{definition}\label{def:ariththeory}
164 251 adas
Define the theory $\arith^i$ consisting of the $\basic$ axioms, $\cpind{\Sigma^\safe_i } $,
165 251 adas
%\begin{itemize}
166 251 adas
%	\item $\basic$;
167 251 adas
%	\item $\cpind{\Sigma^\safe_i } $:
168 251 adas
%\end{itemize}
169 251 adas
and a particular inference rule, called $\rais$, for closed formulas $\forall \vec x. \exists y. A$:
170 251 adas
\[
171 251 adas
 \dfrac{\proves \forall \vec x^\normal . \exists  y^\safe .  A }{ \proves \forall \vec x^\normal .\exists y^\normal . A}
172 251 adas
\]
173 251 adas
We will write $\arith^i \proves A$ if $A$ is a logical consequence of the axioms and rules of $\arith^i$, in the usual way.
174 251 adas
\end{definition}
175 251 adas
%\patrick{I think in the definition of  $\arith^i$ we should impose that the formulas considered are \textit{integer positive}, that is to say that the only negative occurrences of atoms $\safe(t)$, $\normal(t)$ are those occurring in $\forall^{\safe}$ and $\forall^{\normal}$.  Indeed I don't think this can be just proved to be a consequence of a kind of 'normal form' of proofs, as we had discussed (see sect 4.4)}
176 251 adas
%
177 251 adas
%\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
178 251 adas
179 251 adas
\begin{remark}
180 251 adas
Notice that $\rais$ looks similar to the $K$ rule from the calculus for the modal logic $S4$ (which subsumes necessitation), and indeed we believe there is a way to present these results in such a framework.
181 251 adas
However, the proof theory of first-order modal logics, in particular free-cut elimination results used for witnessing, is not sufficiently developed to carry out such an exposition.
182 251 adas
	\end{remark}
183 251 adas
184 251 adas
185 251 adas
186 251 adas
187 251 adas
188 251 adas
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
189 251 adas
190 251 adas
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall \vec u^{\normal} , \forall  x^{\safe}, \exists! y^{\safe}. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$.
191 251 adas
192 251 adas
Let us give a few examples for basic functions representable in $\arith^1$, wherein proofs of totality are routine:
193 251 adas
\begin{itemize}
194 251 adas
\item Projection $\pi_k^{m,n}$: $\forall u_1^{\normal} , \dots, u_m^{\normal} ,  \forall x_{m+1}^{\safe} , \dots, x^{\safe} _{m+n}, \exists y^{\safe} . y=x_k$ if $k\geq m+1$ (resp. $u_k$ if $k\leq m$).
195 251 adas
%\item Successor $\succ{}$: $\forall x^{\safe} , \exists^{\safe} y. y=x+1.$. The formulas for the binary successors $\succ{0}$, $\succ{1}$ and the constant functions $\epsilon^k$ are defined in a similar way.
196 251 adas
%\item Predecessor $p$:   $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$
197 251 adas
\item Conditional $C$:
198 251 adas
$$\begin{array}{ll}
199 251 adas
\forall x^{\safe} , y_{\epsilon}^{\safe}, y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
200 251 adas
                                                                                                   & \cor( \exists z^{\safe}.(x=\succ{0}z) \cand (y=y_0))\\
201 251 adas
                                                                                                   & \cor( \exists z^{\safe}.(x=\succ{1}z) \cand (y=y_1)))\
202 251 adas
\end{array}
203 251 adas
$$
204 251 adas
%\item Addition:
205 251 adas
%$\forall^{\safe} x, y,  \exists^{\safe} z. z=x+y$.
206 251 adas
\item Prefix:
207 251 adas
  This is a predicate that we will need for technical reasons, in the completeness proof. The predicate $\pref(k,x,y)$ holds if the prefix of string $x$
208 251 adas
  of length $k$ is $y$. It is defined as:
209 251 adas
  $$\begin{array}{ll}
210 251 adas
\exists z^{\safe} , \exists l^{\normal} \leq |x|. & (k+l= |x|\\
211 251 adas
                                                                                                   & \cand \; |z|=l\\
212 251 adas
                                                                                                   & \cand \; x=y\smsh(2,l)+z)
213 251 adas
                                                                                                   \end{array}
214 251 adas
$$
215 251 adas
\item The following predicates will also be needed in proofs:
216 251 adas
217 251 adas
$\zerobit(x,k)$ (resp. $\onebit(x,k)$) holds iff the $k$th bit of $x$ is 0 (resp. 1). The predicate $\zerobit(x,k)$  for instance can be
218 251 adas
defined by:
219 251 adas
$$ \exists y^{\safe} .(\pref(k,x,y) \cand \exists z^{\safe} . y=\succ{0}z).$$
220 251 adas
\end{itemize}
221 251 adas
222 251 adas
\subsection{A sequent calculus presentation}
223 251 adas
\begin{figure}
224 251 adas
	\[
225 251 adas
	\small
226 254 adas
	\hspace{-4em}
227 251 adas
	\begin{array}{cccc}
228 251 adas
	%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
229 251 adas
	%& \vlinf{\id}{}{p \seqar p}{}
230 251 adas
	%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
231 251 adas
	%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
232 251 adas
	\vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
233 251 adas
	& \vliinf{cut}{}{\Gamma, \Sigma \seqar \Delta, \Pi }{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
234 251 adas
	&	\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
235 251 adas
	&
236 251 adas
237 251 adas
	\vlinf{\rigrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
238 251 adas
		\\
239 251 adas
240 251 adas
		\noalign{\bigskip}
241 251 adas
		%\text{Structural:} & & & \\
242 251 adas
		%\noalign{\bigskip}
243 251 adas
244 251 adas
		\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
245 251 adas
		&
246 251 adas
		\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
247 251 adas
		&
248 251 adas
		\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
249 251 adas
		&
250 251 adas
		\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
251 251 adas
		\\
252 251 adas
		\noalign{\bigskip}
253 251 adas
		\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
254 251 adas
		&
255 251 adas
		\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
256 251 adas
		&
257 251 adas
		\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
258 251 adas
		&
259 251 adas
		\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) }
260 251 adas
	\\
261 251 adas
	\noalign{\bigskip}
262 251 adas
	%\noalign{\bigskip}
263 251 adas
	\vliinf{\lefrul{\cor}}{}{\Gamma, \Sigma, A \cor B \seqar \Delta, \Pi}{\Gamma , A \seqar \Delta}{\Sigma, B \seqar \Pi}
264 251 adas
	&
265 251 adas
	\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
266 251 adas
	&
267 251 adas
	%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
268 251 adas
	%\quad
269 251 adas
	\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
270 251 adas
	&
271 251 adas
	%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
272 251 adas
	%\quad
273 251 adas
	\vliinf{\rigrul{\cand}}{}{\Gamma, \Sigma \seqar \Delta, \Pi, A \cand B }{\Gamma \seqar \Delta, A}{\Sigma \seqar \Pi, B}
274 251 adas
	%\noalign{\bigskip}
275 251 adas
	% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
276 251 adas
	\end{array}
277 251 adas
	\]
278 251 adas
	\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus}
279 251 adas
\end{figure}
280 251 adas
281 251 adas
In order to carry out witness extraction for proofs of $\arith^i$, it will be useful to work with a \emph{sequent calculus} representation of proofs.
282 251 adas
Such systems exhibit strong normal forms, notably `free-cut free' proofs, and so are widely used for the `witness function method' for extracting programs from proofs \cite{Buss86book,Buss98:intro-proof-theory}.
283 251 adas
We state the required technical material here only briefly, due to space constraints.
284 251 adas
285 251 adas
A \emph{sequent} is an expression $\Gamma \seqar \Delta$ where $\Gamma$ and $\Delta$ are multisets of formulas.
286 251 adas
The inference rules of the sequent calculus $\LK$ are displayed in Fig.~\ref{fig:sequentcalculus}.
287 251 adas
Of course, we have the following:
288 251 adas
\begin{proposition}
289 251 adas
	$A$ is a first-order theorem if and only if there is an $\LK$ proof of $\seqar A$.
290 251 adas
\end{proposition}
291 251 adas
292 251 adas
%We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
293 251 adas
% \[
294 251 adas
% \begin{array}{cc}
295 251 adas
%    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
296 251 adas
%\end{array}
297 251 adas
%\]
298 251 adas
% where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
299 251 adas
% \begin{enumerate}
300 251 adas
% \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
301 251 adas
%$ \Gamma,  \Pi$ are called \textit{context formulas}.
302 251 adas
%\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
303 251 adas
%    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
304 251 adas
%   \end{enumerate}
305 251 adas
%
306 251 adas
%%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
307 251 adas
% Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
308 251 adas
%
309 251 adas
%%\begin{definition}
310 251 adas
%%[Polynomial induction]
311 251 adas
%%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
312 251 adas
%%\[
313 251 adas
%%A(0)
314 251 adas
%%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
315 251 adas
%%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
316 251 adas
%%\cimp  \forall x^{\normal} . A(x)
317 251 adas
%%\]
318 251 adas
%%for each formula $A(x)$.
319 251 adas
%%
320 251 adas
%%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
321 251 adas
%%
322 251 adas
%%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
323 251 adas
%%\end{definition}
324 251 adas
%
325 251 adas
%As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$.
326 251 adas
327 251 adas
We extend this purely logical calculus with certain non-logical rules and initial sequents corresponding to our theories $\arith^i$.
328 251 adas
 For instance the axiom $\pind$ of Dfn.~\ref{def:polynomialinduction} is represented by the following rule:
329 251 adas
\begin{equation}
330 251 adas
\label{eqn:ind-rule}
331 251 adas
\small
332 251 adas
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
333 251 adas
\end{equation}
334 251 adas
where $t$ varies over terms and the eigenvariable $a$ does not occur in the lower sequent.
335 251 adas
%
336 251 adas
Similarly the $\rais$ inference rule of Dfn.~\ref{def:ariththeory} is represented by the nonlogical rule,
337 251 adas
 \[
338 251 adas
 \begin{array}{cc}
339 251 adas
    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \exists  y^\normal .  A }{  \normal(t_1), \dots, \normal(t_k) \seqar \exists  y^\safe .  A}
340 251 adas
\end{array}
341 251 adas
\]
342 251 adas
%
343 251 adas
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general:
344 251 adas
%\[
345 251 adas
% \begin{array}{cc}
346 251 adas
%    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \normal(t) }{  \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)}
347 251 adas
%\end{array}
348 251 adas
%\]
349 251 adas
%}
350 251 adas
%
351 251 adas
$\basic$ axioms are represented by designated initial sequents.
352 251 adas
For instance here are some initial sequents corresponding to some of the $\basic$ axioms:
353 251 adas
\[
354 251 adas
\small
355 251 adas
\begin{array}{l}
356 251 adas
\begin{array}{cccc}
357 251 adas
\vlinf{}{}{\seqar \safe (0)}{}&
358 251 adas
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}&
359 251 adas
\vlinf{}{}{ \safe (t)   \seqar 0 \neq \succ{} t}{} &
360 251 adas
\vlinf{}{}{\safe (s) , \safe (t)  , \succ{} s = \succ{} t\seqar s = t }{}\\
361 251 adas
\end{array}
362 251 adas
\\
363 251 adas
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y  }{}
364 251 adas
\qquad
365 251 adas
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\
366 251 adas
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t)  }{}
367 251 adas
\qquad
368 251 adas
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t)  }{}\\
369 251 adas
\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}
370 251 adas
\end{array}
371 251 adas
\]
372 251 adas
373 251 adas
The sequent system for $\arith^i$ extends $\LK$ by the $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$ rules.
374 251 adas
 Naturally, by completeness, we have that $\arith^i \proves A$ if and only if there is a sequent proof of $\seqar A$ in the corresponding system.
375 251 adas
 In fact, by \emph{free-cut elimination} results \cite{Takeuti87,Cook:2010:LFP:1734064} we may actually say something much stronger.
376 251 adas
377 251 adas
 Let us say that a sorting $(\vec u ; \vec x)$ of the variables $\vec u , \vec x$ is \emph{compatible} with a formula $A$ if each variable of $\vec x$ occurs hereditarily safe with respect to the $\bc$-typing of terms, i.e.\ never under $\smsh, |\cdot|$ and to the right of $\times$.
378 251 adas
379 251 adas
\begin{theorem}
380 251 adas
	[Typed variable normal form]
381 251 adas
	\label{thm:normal-form}
382 251 adas
	If $\arith^i\proves  A$ then there is a $\arith^i$ sequent proof $\pi$ of $A$ such that each line has the form:
383 251 adas
	\[
384 251 adas
	\normal(\vec u), \safe (\vec x), \Gamma \seqar \Delta
385 251 adas
	\]
386 251 adas
	where $\Gamma \seqar \Delta$ contains only $\Sigma^\safe_i$ formulae for which the sorting $(\vec u ;\vec x)$ is compatible.
387 251 adas
\end{theorem}
388 251 adas
389 251 adas
Strictly speaking, we must alter some of the sequent rules a little to arrive at this normal form. For instance the $\pind$ rule would have $\normal(\vec u)$ in its lower sequent rather than $\normal (t(\vec u))$. The latter is a consequence of the former already in $\basic$.
390 251 adas
The proof of this result also relies on a heavy use of the structural rules, contraction and weakening, to ensure that we always have a complete and compatible sorting of variables on the LHS of a sequent. This is similar to what is done in \cite{OstrinWainer05} where they use a $G3$ style calculus to manage such structural manipulations.
391 251 adas
392 251 adas
As we mentioned, the fact that only $\Sigma^\safe_i$ formulae occur is due to the free-cut elimination result for first-order calculi \cite{Takeuti87,Cook:2010:LFP:1734064}, which gives a form of proof where every $\cut$ step has one of its cut formulae `immediately' below a non-logical step. Again, we have to adapt the $\rais$ rule a little to achieve our result, due to the fact that it has a $\exists x^\normal$ in its lower sequent. For this we consider a merge of $\rais$ and $\cut$, which allows us to directly cut the upper sequent of $\rais$ against a sequent of the form $\normal(u), A(u), \Gamma \seqar \Delta$.
393 251 adas
394 251 adas
Finally, as is usual in bounded arithmetic, we use distinguished rules for our relativised quantifiers, although we use ones that satisfy the aforementioned constraints. For instance, we include the following rules, from which the remaining ones are similar:
395 251 adas
\[
396 251 adas
\vlinf{\rigrul{\forall}}{}{ \normal(\vec u) , \safe (\vec x), \Gamma \seqar \Delta , \forall x^\safe . A(x)}{\normal(\vec u ) , \safe (\vec x), \safe (x) , \Gamma \seqar \Delta, A(x)}
397 251 adas
\quad
398 251 adas
\vlinf{\rigrul{\exists}}{}{\normal(\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x^\safe . A(x)}{ \normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A(t) }
399 251 adas
\]
400 251 adas
\[
401 251 adas
\vlinf{\lefrul{|\forall|}}{}{\normal (\vec u ) , \safe (\vec x) , s(\vec u) \leq |t(\vec u)| , \forall u^\normal \leq |t(\vec u)| . A(u) , \Gamma \seqar \Delta }{\normal (\vec u ) , \safe (\vec x) , A(s(\vec u)  ) , \Gamma \seqar \Delta  }
402 251 adas
\]
403 251 adas
with the usual side conditions and where, in $\rigrul{\exists}$, $(\vec u ; \vec x)$ is compatible with $t$.