root / CSL16 / appendix.tex @ 255
Historique | Voir | Annoter | Télécharger (14,99 ko)
1 | 33 | adas | \appendix |
---|---|---|---|
2 | 33 | adas | |
3 | 106 | pbaillot | \begin{center} \large APPENDIX \end{center} |
4 | 106 | pbaillot | |
5 | 106 | pbaillot | |
6 | 104 | adas | \input{appendix-preliminaries} |
7 | 104 | adas | \input{appendix-free-cut-elim} |
8 | 104 | adas | \input{appendix-arithmetic} |
9 | 104 | adas | \input{appendix-bc} |
10 | 104 | adas | \input{appendix-bc-convergence} |
11 | 104 | adas | \input{appendix-wfm} |
12 | 104 | adas | |
13 | 104 | adas | |
14 | 106 | pbaillot | |
15 | 105 | adas | % |
16 | 105 | adas | %\section{Some cut-elimination cases} |
17 | 105 | adas | %We work in a one-sided calculus for full linear logic. When working in the affine setting we simply drop the condition that weakened formulae are $?$-ed. |
18 | 105 | adas | % |
19 | 105 | adas | %As well as all usual rules, we have the induction rule: |
20 | 105 | adas | %\[ |
21 | 105 | adas | %\vlinf{\indr}{(x \notin FV (\Gamma) )}{? \Gamma, A^\perp (0) , A(t)}{? \Gamma , A^\perp (x) , A(s x) } |
22 | 105 | adas | %\] |
23 | 105 | adas | % |
24 | 105 | adas | %We give all the various cut-reduction cases in the following section but first we give a simple cut-elimination argument. |
25 | 105 | adas | % |
26 | 105 | adas | %\subsection{A basic (free-)cut elimination argument} |
27 | 105 | adas | %We give an argument that easily scales to free-cut elimination, i.e.\ in the presence of non-logical rules. |
28 | 105 | adas | % |
29 | 105 | adas | %\newcommand{\anarrow}[2]{\overset{#1}{\underset{#2}{\longrightarrow}}} |
30 | 105 | adas | %\newcommand{\cutredlin}{\mathit{ma}} |
31 | 105 | adas | %\newcommand{\cutredexp}{exp} |
32 | 105 | adas | % |
33 | 105 | adas | %\begin{definition} |
34 | 105 | adas | % Let $\anarrow{}{\cutredexp}$ denote the reduction steps concerning exponential cuts, and $\anarrow{}{\cutredlin}$ be the set of cut-reduction steps concerning multiplicative and additive cuts. |
35 | 105 | adas | %\end{definition} |
36 | 105 | adas | % |
37 | 105 | adas | %\newcommand{\rk}{\mathsf{rk}} |
38 | 105 | adas | % \renewcommand{\deg}{\mathsf{deg}} |
39 | 105 | adas | %\begin{definition} |
40 | 105 | adas | % [Measures] |
41 | 105 | adas | % For a $\anarrow{}{\cutredlin}$-redex $r$, let its \emph{degree} $\deg( r)$ be the number of logical connectives or quantifiers in its cut-formula. For a proof $\pi$, its \emph{degree} $\deg( \pi)$ is the multiset of the degree of its redexes. |
42 | 105 | adas | %\end{definition} |
43 | 105 | adas | % |
44 | 105 | adas | %\begin{proposition} |
45 | 105 | adas | %If $\pi$ is not $\anarrow{}{\cutredlin}$-normal then there is a derivation $L:\pi \anarrow{*}{\cutredlin} \pi'$ such that $\deg(\pi')< \deg(\pi)$. |
46 | 105 | adas | %\end{proposition} |
47 | 105 | adas | %\begin{proof} |
48 | 105 | adas | % First let us show the statement in the special case that $\pi$ contains precisely one $\cut$-inference as its final step, by induction on $|\pi|$. Each commutative $\anarrow{}{\cutredlin}$-step results in us being able to apply the inductive hypothesis to smaller proofs,- in the case of $\vlan $ two smaller proofs. Each key $\anarrow{}{\cutredlin}$-case strictly reduces the degree of the proof. Consequently we can eventually transform $\pi$ to a proof $\pi'$ which has possibly several cuts of smaller degree, as required. |
49 | 105 | adas | % |
50 | 105 | adas | % Now to the general case, we simply apply the above procedure to the subproof above a topmost cut in $\pi$. |
51 | 105 | adas | %\end{proof} |
52 | 105 | adas | %\begin{corollary} |
53 | 105 | adas | % $\anarrow{}{\cutredlin}$ is weakly normalising. |
54 | 105 | adas | %\end{corollary} |
55 | 105 | adas | % |
56 | 105 | adas | % |
57 | 105 | adas | %\newcommand{\cntdown}{\mathit{cn}} |
58 | 105 | adas | %\begin{definition} |
59 | 105 | adas | % [Lazy contraction] |
60 | 105 | adas | % Let $\anarrow{}{\cntdown}$ comprise of the following reduction steps: |
61 | 105 | adas | % \begin{enumerate} |
62 | 105 | adas | % \item The commuting steps, |
63 | 105 | adas | % \[ |
64 | 105 | adas | % \vlderivation{ |
65 | 105 | adas | % \vlin{\rho}{}{\Gamma', ?A, }{ |
66 | 105 | adas | % \vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ? A, ? A}} |
67 | 105 | adas | % } |
68 | 105 | adas | % } |
69 | 105 | adas | % \quad\to \quad |
70 | 105 | adas | % \vlderivation{ |
71 | 105 | adas | % \vlin{\cntr}{}{\Gamma', ?A}{ |
72 | 105 | adas | % \vlin{\rho}{}{\Gamma', ?A, ?A}{\vlhy{\Gamma, ? A, ? A}} |
73 | 105 | adas | % } |
74 | 105 | adas | % } |
75 | 33 | adas | % \] |
76 | 105 | adas | % for each unary rule $\rho$. |
77 | 105 | adas | % \item |
78 | 105 | adas | % The key steps: |
79 | 105 | adas | % \[ |
80 | 105 | adas | % \begin{array}{rcl} |
81 | 105 | adas | % \vlderivation{ |
82 | 105 | adas | % \vlin{\cntr}{}{\Gamma, ?A}{ |
83 | 105 | adas | % \vlin{\wk}{}{\Gamma, ?A, ?A}{\vlhy{\Gamma, ?A}} |
84 | 105 | adas | % } |
85 | 105 | adas | % } |
86 | 105 | adas | % \quad &\to & \quad |
87 | 105 | adas | % \Gamma, ?A |
88 | 105 | adas | %% \] |
89 | 105 | adas | %% and |
90 | 105 | adas | %% \[ |
91 | 105 | adas | %\\ |
92 | 105 | adas | %\noalign{\smallskip} |
93 | 105 | adas | % \vlderivation{ |
94 | 105 | adas | % \vlin{\wk}{}{\Gamma, ?A, ?A}{ |
95 | 105 | adas | % \vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ?A, ?A}} |
96 | 105 | adas | % } |
97 | 105 | adas | % } |
98 | 105 | adas | % \quad &\to& \quad |
99 | 105 | adas | % \Gamma, ?A, ?A |
100 | 105 | adas | % \end{array} |
101 | 105 | adas | % \]. |
102 | 105 | adas | %\item The commuting steps, |
103 | 33 | adas | %\[ |
104 | 33 | adas | % \vlderivation{ |
105 | 105 | adas | % \vliin{\rho}{}{\Gamma ,?A}{ |
106 | 105 | adas | % \vlin{\cntr}{}{\Gamma_1, ?A}{\vlhy{\Gamma_1, ?A, ?A}} |
107 | 105 | adas | % }{\vlhy{\Gamma_2}} |
108 | 33 | adas | % } |
109 | 105 | adas | % \quad \to \quad |
110 | 33 | adas | % \vlderivation{ |
111 | 105 | adas | % \vlin{\cntr}{}{\Gamma, ?A}{ |
112 | 105 | adas | % \vliin{\rho}{}{\Gamma,?A, ?A}{\vlhy{\Gamma_1, ?A, ?A}}{ \vlhy{\Gamma_2} } |
113 | 33 | adas | % } |
114 | 33 | adas | % } |
115 | 105 | adas | %\] |
116 | 105 | adas | %%\[ |
117 | 105 | adas | %%\begin{array}{rcl} |
118 | 105 | adas | %% \vlderivation{ |
119 | 105 | adas | %% \vliin{\land}{}{\Gamma, \Delta, ?A, B\land C}{ |
120 | 105 | adas | %% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
121 | 105 | adas | %% }{\vlhy{\Delta, C}} |
122 | 105 | adas | %% } |
123 | 105 | adas | %% \quad &\to &\quad |
124 | 105 | adas | %% \vlderivation{ |
125 | 105 | adas | %% \vlin{\cntr}{}{\Gamma, \Delta, ?A, B\land C}{ |
126 | 105 | adas | %% \vliin{\land}{}{\Gamma, \Delta, ?A, ?A, B\land C}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, C} } |
127 | 105 | adas | %% } |
128 | 105 | adas | %% } |
129 | 105 | adas | %%% \] |
130 | 105 | adas | %%% |
131 | 105 | adas | %%% \[ |
132 | 105 | adas | %%\\ |
133 | 105 | adas | %%\noalign{\smallskip} |
134 | 105 | adas | %% \vlderivation{ |
135 | 105 | adas | %% \vliin{\cut}{}{\Gamma, \Delta, ?A}{ |
136 | 105 | adas | %% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
137 | 105 | adas | %% }{\vlhy{\Delta, \lnot{B}}} |
138 | 105 | adas | %% } |
139 | 105 | adas | %% \quad &\to& \quad |
140 | 105 | adas | %% \vlderivation{ |
141 | 105 | adas | %% \vlin{\cntr}{}{\Gamma, \Delta, ?A}{ |
142 | 105 | adas | %% \vliin{\cut}{}{\Gamma, \Delta, ?A, ?A}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, \lnot{B}} } |
143 | 105 | adas | %% } |
144 | 105 | adas | %% } |
145 | 105 | adas | %%\end{array} |
146 | 105 | adas | %%\] |
147 | 105 | adas | %for each binary rule $\rho \in \{ \land, \cut \}$. |
148 | 105 | adas | %\item The commuting step: |
149 | 105 | adas | % \[ |
150 | 33 | adas | % \vlderivation{ |
151 | 105 | adas | % \vliin{\vlan}{}{\Gamma, ?A, B\vlan C}{ |
152 | 33 | adas | % \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
153 | 105 | adas | % }{\vlhy{\Gamma, ?A, B}} |
154 | 33 | adas | % } |
155 | 105 | adas | % \quad \to \quad |
156 | 33 | adas | % \vlderivation{ |
157 | 105 | adas | % \vlin{\cntr}{}{\Gamma, ?A, B\vlan C}{ |
158 | 105 | adas | % \vliin{\vlan}{}{\Gamma, ?A, ?A, B\vlan C}{\vlhy{\Gamma, ?A, ?A, B}}{ |
159 | 105 | adas | % \vlin{\wk}{}{\Gamma, ?A, ?A, C}{\vlhy{\Gamma, ?A, C}} |
160 | 105 | adas | % } |
161 | 33 | adas | % } |
162 | 33 | adas | % } |
163 | 105 | adas | % \] |
164 | 105 | adas | % \end{enumerate} |
165 | 105 | adas | % For binary rules: |
166 | 105 | adas | % |
167 | 105 | adas | %\end{definition} |
168 | 105 | adas | %\begin{proposition} |
169 | 105 | adas | % $\anarrow{}{\cntdown}$ is weakly normalising |
170 | 105 | adas | % , modulo $\cntr$-$\cntr$ redexes, |
171 | 105 | adas | % and degree-preserving. |
172 | 105 | adas | % If $\pi$ is $\anarrow{}{\cutredlin}$-normal and $\pi \downarrow_\cntdown \pi'$, then so is $\pi'$. |
173 | 105 | adas | %\end{proposition} |
174 | 105 | adas | %\begin{proof} |
175 | 105 | adas | % By induction on the number of redexes in a proof. Start with bottommost redex, by induction on number of inference steps beneath it. |
176 | 105 | adas | %\end{proof} |
177 | 105 | adas | % |
178 | 105 | adas | %\begin{remark} |
179 | 105 | adas | % Only weakly normalising since $\cntr$ can commute with $\cntr$, allowing cycles. |
180 | 105 | adas | %\end{remark} |
181 | 105 | adas | % |
182 | 105 | adas | %\begin{proposition} |
183 | 105 | adas | % If $\pi$ is $\anarrow{}{\cutredexp}$-reducible but $\anarrow{}{\cutredlin}$- and $\anarrow{}{\cntdown}$-normal then there is a derivation $H:\pi \anarrow{*}{\cutredexp} \pi'$ such that $\deg (\pi')<\deg(\pi)$. |
184 | 105 | adas | %\end{proposition} |
185 | 105 | adas | % |
186 | 105 | adas | % |
187 | 105 | adas | % |
188 | 105 | adas | %\subsection{Base cases} |
189 | 105 | adas | % |
190 | 105 | adas | %\[ |
191 | 105 | adas | %\vlderivation{ |
192 | 105 | adas | %\vliin{\cut}{}{ \Gamma,a }{ \vlhy{\Gamma,a} }{ \vlin{\id}{}{a,a^\bot}{ \vlhy{} } } |
193 | 105 | adas | %} |
194 | 105 | adas | %\quad\to\quad |
195 | 105 | adas | %\vlderivation{ |
196 | 105 | adas | %\Gamma,a |
197 | 105 | adas | %} |
198 | 33 | adas | %\] |
199 | 105 | adas | % |
200 | 33 | adas | %\[ |
201 | 33 | adas | %\vlderivation{ |
202 | 105 | adas | %\vliin{\cut}{}{\Gamma}{ \vlin{\bot}{}{ \Gamma,\bot }{ \vlhy{\Gamma} } }{ \vlin{1}{}{1}{ \vlhy{} } } |
203 | 33 | adas | %} |
204 | 105 | adas | %\quad\to\quad |
205 | 105 | adas | %\vlderivation{ |
206 | 105 | adas | %\Gamma |
207 | 33 | adas | %} |
208 | 33 | adas | %\] |
209 | 105 | adas | % |
210 | 33 | adas | %\[ |
211 | 33 | adas | %\vlderivation{ |
212 | 105 | adas | %\vliin{\cut}{}{ \Gamma,\Delta,\top }{ \vlin{\top}{}{ \Gamma,\top,0 }{ \vlhy{} } }{ \vlhy{\Delta , \top } } |
213 | 33 | adas | %} |
214 | 33 | adas | %\quad\to\quad |
215 | 105 | adas | %\vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
216 | 105 | adas | %\] |
217 | 105 | adas | % |
218 | 105 | adas | %\subsection{Commutative cases} |
219 | 105 | adas | %These are the cases when the principal formula of a step is not active for the cut-step below. |
220 | 105 | adas | % |
221 | 105 | adas | %\begin{enumerate} |
222 | 105 | adas | %\item The cut-step is immediately preceded by an initial step. Note that only the case for $\top$ applies: |
223 | 105 | adas | %\[ |
224 | 33 | adas | %\vlderivation{ |
225 | 105 | adas | %\vliin{\cut}{}{\Gamma,\Delta,\top}{ |
226 | 105 | adas | %\vlin{\top}{ }{ \Gamma,\top,A }{ \vlhy{} } |
227 | 105 | adas | % }{ \vlhy{\Delta,A^\bot } } |
228 | 105 | adas | %} |
229 | 105 | adas | %\quad\to\quad |
230 | 105 | adas | %\vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
231 | 105 | adas | %\] |
232 | 105 | adas | %%Notice that this commutation eliminates the cut entirely and preserves the height of all cuts below. |
233 | 105 | adas | %\item\label{CaseCommOneStep} A cut-step is immediately preceded by a step $\rho$ with exactly one premiss: |
234 | 105 | adas | %\[ |
235 | 105 | adas | %\vlderivation{ |
236 | 105 | adas | %\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
237 | 105 | adas | %} |
238 | 105 | adas | %\] |
239 | 105 | adas | %We have three subcases: |
240 | 105 | adas | %\begin{enumerate} |
241 | 105 | adas | %\item\label{subcase:unary-commutation-vanilla} |
242 | 105 | adas | %%$\Delta$ consists of only $?$-ed formulae or |
243 | 105 | adas | %If $\rho \notin \{! , \indr \}$ then we can simply permute as follows: |
244 | 105 | adas | %\begin{equation} |
245 | 105 | adas | %\label{eqn:com-case-unary-simple} |
246 | 105 | adas | %\vlderivation{ |
247 | 105 | adas | %\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
248 | 105 | adas | %} |
249 | 105 | adas | %\quad \to \quad |
250 | 105 | adas | %\vlderivation{ |
251 | 105 | adas | %\vlin{\rho}{}{\Gamma',\Delta}{ |
252 | 105 | adas | %\vliin{\cut}{}{\Gamma,\Delta}{\vlhy{\Gamma,A}}{\vlhy{A^\bot , \Delta}} |
253 | 105 | adas | %} |
254 | 105 | adas | %} |
255 | 105 | adas | %\end{equation} |
256 | 105 | adas | %(If $\rho$ was $\forall$ then we might need to rename some free variables in $\Delta$.) |
257 | 105 | adas | %\item $\rho $ is a $!$-step. Therefore $\Gamma$ has the form $? \Sigma , B$ and $A$ has the form $?C$, yielding the following situation: |
258 | 105 | adas | %\[ |
259 | 105 | adas | %\vlderivation{ |
260 | 105 | adas | %\vliin{\cut}{}{? \Sigma, !B, \Delta }{ |
261 | 105 | adas | %\vlin{!}{}{? \Sigma, !B , ?C}{\vlhy{?\Sigma , B , ?C} } |
262 | 33 | adas | %}{ |
263 | 105 | adas | %\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
264 | 33 | adas | %} |
265 | 33 | adas | %} |
266 | 105 | adas | %\] |
267 | 105 | adas | %Now, if $!C^\perp$ is principle for $\rho'$ then $\rho'\in \{! , \indr\}$ and so $\Delta $ must be $?$-ed; in this case we are able to apply the transformation \eqref{eqn:com-case-unary-simple}. Otherwise $A^\perp$ is not principal for $\rho'$ and so $\rho' \notin \{! , \indr \}$, which means we can apply \ref{subcase:unary-commutation-vanilla} along this side of the subproof. |
268 | 105 | adas | %\item $\rho$ is a $\indr$-step. Therefore $\Gamma$ has the form $? \Sigma , B^\perp(x), B(s x) $ and $A$ has the form $?C$, and the argument is similar to the case above. |
269 | 105 | adas | %% yielding the following situation: |
270 | 105 | adas | %%\[ |
271 | 105 | adas | %%\vlderivation{ |
272 | 105 | adas | %% \vliin{\cut}{}{? \Sigma, B^\perp (0) , B(t), \Delta }{ |
273 | 105 | adas | %% \vlin{\indr}{}{? \Sigma, B^\perp (0) , B(t) , ?C}{\vlhy{?\Sigma , B^\perp(x) , B(s x) , ?C} } |
274 | 105 | adas | %% }{ |
275 | 105 | adas | %% \vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
276 | 105 | adas | %%} |
277 | 105 | adas | %%} |
278 | 105 | adas | %%\] |
279 | 105 | adas | %\end{enumerate} |
280 | 105 | adas | % |
281 | 105 | adas | % |
282 | 105 | adas | % |
283 | 105 | adas | %\item A cut-step is immediately preceded by a $\vlte $-step: |
284 | 105 | adas | %\[ |
285 | 105 | adas | %\vlderivation{ |
286 | 105 | adas | %\vliin{\cut}{}{\Gamma,\Delta,\Sigma,A\vlte B }{ |
287 | 105 | adas | %\vliin{\vlte}{}{\Gamma,\Delta,A\vlte B,C }{\vlhy{\Gamma,A,C}}{\vlhy{\Delta,B}} |
288 | 105 | adas | %}{\vlhy{ \Sigma , C^\bot }} |
289 | 33 | adas | %} |
290 | 105 | adas | %\quad\to\quad |
291 | 105 | adas | %\vlderivation{ |
292 | 105 | adas | %\vliin{\vlte}{}{\Gamma,\Delta,\Sigma,A\vlte B}{ |
293 | 105 | adas | %\vliin{\cut}{}{\Gamma,\Sigma,A}{\vlhy{\Gamma,A,C}}{\vlhy{\Sigma,C^\bot}} |
294 | 105 | adas | %}{\vlhy{\Delta,B}} |
295 | 105 | adas | %} |
296 | 33 | adas | %\] |
297 | 105 | adas | %%Notice that this commutation might increase the height of any cuts below along the right branch of the indicated cut, but decreases the height along the left branch. |
298 | 105 | adas | %\item\label{CommCaseAmpersand} A cut-step is immediately preceded by a $\vlan$-step. |
299 | 33 | adas | %\[ |
300 | 33 | adas | %\vlderivation{ |
301 | 105 | adas | %\vliin{\cut}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} } |
302 | 33 | adas | %} |
303 | 33 | adas | %\quad\to\quad |
304 | 33 | adas | %\vlderivation{ |
305 | 105 | adas | %\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{ |
306 | 105 | adas | %\vliin{cut}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } } |
307 | 105 | adas | %}{ |
308 | 105 | adas | %\vliin{ \cut }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} } |
309 | 33 | adas | %} |
310 | 105 | adas | %} |
311 | 33 | adas | %\] |
312 | 105 | adas | %\item (No rule for cuts commuting with cuts.) |
313 | 105 | adas | %%A cut-step is immediately preceded by another cut-step: |
314 | 33 | adas | %\[ |
315 | 33 | adas | %\vlderivation{ |
316 | 105 | adas | % \vliin{\cut}{}{\Gamma, \Delta, \Sigma}{ |
317 | 105 | adas | % \vliin{\cut}{}{\Gamma, \Delta, B}{\vlhy{\Gamma, A}}{\vlhy{\Delta, \lnot{A}, B}} |
318 | 105 | adas | % }{\vlhy{\Sigma, \lnot{B}}} |
319 | 105 | adas | % } |
320 | 105 | adas | % \quad\to\quad |
321 | 105 | adas | %\vlderivation{ |
322 | 105 | adas | % \vliin{\cut}{}{\Gamma, \Delta, \Sigma}{\vlhy{\Gamma, A}}{ |
323 | 105 | adas | % \vliin{\cut}{}{\Delta, \Sigma, \lnot{A}}{\vlhy{\Delta, \lnot{A}, B}}{\vlhy{\Sigma, \lnot{B}}} |
324 | 105 | adas | % } |
325 | 105 | adas | % } |
326 | 105 | adas | %\] |
327 | 105 | adas | %\end{enumerate} |
328 | 105 | adas | % |
329 | 105 | adas | % |
330 | 105 | adas | % |
331 | 105 | adas | %\subsection{Key cases: structural steps} |
332 | 105 | adas | %%[THIS SECTION MIGHT NOT BE NECESSARY] |
333 | 105 | adas | %We attempt to permute cuts on exponential formulae over structural steps whose principal formula is active for the cut. |
334 | 105 | adas | % |
335 | 105 | adas | %We use the commutative case \ref{CaseCommOneStep} to assume that the topmost cut-step in a sequence has already been permuted up to its origin on the $!$-side. |
336 | 105 | adas | % |
337 | 105 | adas | %We have two cases. |
338 | 105 | adas | %\begin{enumerate} |
339 | 105 | adas | %\item\label{StructStepCont} The structural step preceding the cut is a weakening: |
340 | 105 | adas | %\[ |
341 | 105 | adas | %\vlderivation{ |
342 | 105 | adas | %\vliin{\cut}{}{?\Gamma,\Delta}{ \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } }{ \vlin{w}{}{ ?A^\bot }{ \vlhy{\Delta } } } |
343 | 33 | adas | %} |
344 | 105 | adas | %\quad\to\quad |
345 | 105 | adas | %\vlinf{w}{}{?\Gamma,\Delta}{ \Delta } |
346 | 105 | adas | %\] |
347 | 105 | adas | %%\item The structural step preceding the cut is a contraction: |
348 | 105 | adas | %%\[ |
349 | 105 | adas | %%\vlderivation{ |
350 | 105 | adas | %%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
351 | 105 | adas | %% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
352 | 105 | adas | %%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
353 | 105 | adas | %%} |
354 | 105 | adas | %%\quad\to\quad |
355 | 105 | adas | %%\vlderivation{ |
356 | 105 | adas | %%\vliq{c}{}{?\Gamma, \Delta}{ |
357 | 105 | adas | %%\vliin{\cut}{}{?\Gamma, ?\Gamma,\Delta }{ |
358 | 105 | adas | %% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
359 | 105 | adas | %%}{ |
360 | 105 | adas | %%\vliin{\cut}{}{?\Gamma,?A^\bot , \Delta }{ |
361 | 105 | adas | %% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
362 | 105 | adas | %%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
363 | 105 | adas | %%} |
364 | 105 | adas | %%} |
365 | 105 | adas | %%} |
366 | 105 | adas | %%\] |
367 | 105 | adas | %%OR use a multicut: |
368 | 105 | adas | %%\[ |
369 | 105 | adas | %%\vlderivation{ |
370 | 105 | adas | %%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
371 | 105 | adas | %% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
372 | 105 | adas | %%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
373 | 105 | adas | %%} |
374 | 105 | adas | %%\quad\to\quad |
375 | 105 | adas | %%\vlderivation{ |
376 | 105 | adas | %%\vliin{\multicut}{}{?\Gamma,?A^\bot , \Delta }{ |
377 | 105 | adas | %% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
378 | 105 | adas | %%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
379 | 105 | adas | %%} |
380 | 105 | adas | %%\] |
381 | 105 | adas | %\item The structural step preceding a cut is a contraction: |
382 | 105 | adas | %\[ |
383 | 105 | adas | %\vlderivation{ |
384 | 105 | adas | % \vliin{\cut}{}{?\Gamma, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
385 | 105 | adas | % \vlin{\cntr}{}{ ?A,\Sigma }{ \vlhy{ ?A,?A,\Sigma } } |
386 | 105 | adas | % } |
387 | 33 | adas | %} |
388 | 33 | adas | %\quad\to\quad |
389 | 33 | adas | %\vlderivation{ |
390 | 105 | adas | % \vliq{\cntr}{}{ ?\Gamma,\Sigma }{ |
391 | 105 | adas | % \vliin{\cut}{}{ ?\Gamma,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
392 | 105 | adas | % \vliin{\cut}{}{ ?A,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,\Sigma } } |
393 | 105 | adas | % } |
394 | 105 | adas | % } |
395 | 33 | adas | %} |
396 | 105 | adas | %\] |
397 | 105 | adas | %%\item The structural step preceding a cut is a parallel contraction: |
398 | 105 | adas | %%\[ |
399 | 105 | adas | %%\vlderivation{ |
400 | 105 | adas | %%\vliin{\cut}{}{?\Gamma,?\Delta, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
401 | 105 | adas | %%\vlin{}{}{ ?A,?\Delta,\Sigma }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
402 | 105 | adas | %%} |
403 | 105 | adas | %%} |
404 | 105 | adas | %%\quad\to\quad |
405 | 105 | adas | %%\vlderivation{ |
406 | 105 | adas | %%\vlin{}{}{ ?\Gamma,?\Delta,\Sigma }{ |
407 | 105 | adas | %%\vliin{\cut}{}{ ?\Gamma,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
408 | 105 | adas | %%\vliin{\cut}{}{ ?A,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
409 | 105 | adas | %%} |
410 | 105 | adas | %%} |
411 | 105 | adas | %%} |
412 | 105 | adas | %%\] |
413 | 105 | adas | %\end{enumerate} |
414 | 105 | adas | % |
415 | 105 | adas | %\subsection{Key cases: logical steps} |
416 | 105 | adas | %Finally, once all cuts have been permuted maximally on both sides, we have the cases when the cut-formula is principal for a preceding logical step on both sides. We have three cases, one for every pair of connectives. |
417 | 105 | adas | %\begin{enumerate} |
418 | 105 | adas | %\item The cut-formula is multiplicative: |
419 | 105 | adas | %\[ |
420 | 105 | adas | %\vlderivation{ |
421 | 105 | adas | %\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ |
422 | 105 | adas | %\vliin{\vlte}{}{ \Gamma,\Delta,A\vlte B }{ \vlhy{\Gamma,A} }{ \vlhy{\Delta,B} } |
423 | 105 | adas | %}{ \vlin{\vlpa}{}{ \Sigma, A^\bot \vlpa B^\bot }{ \vlhy{\Sigma , A^\bot , B^\bot} } } |
424 | 33 | adas | %} |
425 | 105 | adas | %\quad\to\quad |
426 | 105 | adas | %\vlderivation{ |
427 | 105 | adas | %\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ \vlhy{\Gamma,A} }{ |
428 | 105 | adas | %\vliin{\cut}{}{ \Delta,\Sigma,A^\bot }{ \vlhy{\Delta,B} }{ \vlhy{\Sigma , A^\bot,B^\bot } } |
429 | 33 | adas | %} |
430 | 105 | adas | %} |
431 | 33 | adas | %\] |
432 | 105 | adas | %\item The cut-formula is additive, |
433 | 105 | adas | %\[ |
434 | 105 | adas | %\vlderivation{ |
435 | 105 | adas | %\vliin{\cut}{}{ \Gamma,\Delta }{ |
436 | 105 | adas | %\vliin{\vlan}{}{ \Gamma,A\vlan B }{ \vlhy{\Gamma,A} }{ \vlhy{\Gamma,B} } |
437 | 105 | adas | % }{ \vlin{\vlor}{}{ \Delta,A^\bot\vlor B^\bot }{ \vlhy{\Delta, A^\bot } } } |
438 | 105 | adas | %} |
439 | 105 | adas | %\quad\to\quad |
440 | 105 | adas | %\vliinf{\cut}{}{ \Gamma,\Delta }{ \Gamma,A }{ \Delta,A^\bot } |
441 | 105 | adas | %\] |
442 | 105 | adas | %where the case for the other $\vlor$-rule is symmetric. |
443 | 105 | adas | %\item The cut-formula is exponential. |
444 | 105 | adas | %\[ |
445 | 105 | adas | %\vlderivation{ |
446 | 105 | adas | %\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
447 | 105 | adas | % \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
448 | 105 | adas | %}{ |
449 | 105 | adas | %\vlin{?}{}{ \Delta,?A^\bot }{ \vlhy{\Delta, A^\bot } } |
450 | 105 | adas | %} |
451 | 105 | adas | %} |
452 | 105 | adas | %\quad\to\quad |
453 | 105 | adas | %\vliinf{\cut}{}{ ?\Gamma,\Delta }{ ?\Gamma,A }{ \Delta,A^\bot } |
454 | 105 | adas | %\] |
455 | 105 | adas | %\item The cut-formula is quantified. |
456 | 105 | adas | %\[ |
457 | 105 | adas | %\vlderivation{ |
458 | 105 | adas | % \vliin{\cut}{}{\Gamma, \Delta}{ |
459 | 105 | adas | % \vlin{\forall}{}{\Gamma, \forall x. A(x)}{\vltr{\pi(a)}{\Gamma, A(a)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}} |
460 | 105 | adas | % }{ |
461 | 105 | adas | % \vlin{\exists}{}{\Delta, \exists x . \lnot{A}(x)}{\vlhy{\Delta, \lnot{A}(t)}} |
462 | 105 | adas | % } |
463 | 105 | adas | % } |
464 | 105 | adas | % \quad \to \quad |
465 | 105 | adas | % \vlderivation{ |
466 | 105 | adas | % \vliin{\cut}{}{\Gamma, \Delta}{ |
467 | 105 | adas | % \vltr{\pi(t)}{\Gamma, A(t)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
468 | 105 | adas | % }{\vlhy{\Delta, \lnot{A}(t)}} |
469 | 105 | adas | % } |
470 | 105 | adas | %\] |
471 | 105 | adas | %\end{enumerate} |
472 | 105 | adas | % |