Statistiques
| Révision :

root / CSL16 / appendix.tex @ 255

Historique | Voir | Annoter | Télécharger (14,99 ko)

1 33 adas
\appendix
2 33 adas
3 106 pbaillot
\begin{center} \large APPENDIX \end{center}
4 106 pbaillot
5 106 pbaillot
6 104 adas
\input{appendix-preliminaries}
7 104 adas
\input{appendix-free-cut-elim}
8 104 adas
\input{appendix-arithmetic}
9 104 adas
\input{appendix-bc}
10 104 adas
\input{appendix-bc-convergence}
11 104 adas
\input{appendix-wfm}
12 104 adas
13 104 adas
14 106 pbaillot
15 105 adas
%
16 105 adas
%\section{Some cut-elimination cases}
17 105 adas
%We work in a one-sided calculus for full linear logic. When working in the affine setting we simply drop the condition that weakened formulae are $?$-ed.
18 105 adas
%
19 105 adas
%As well as all usual rules, we have the induction rule:
20 105 adas
%\[
21 105 adas
%\vlinf{\indr}{(x \notin FV (\Gamma) )}{? \Gamma, A^\perp (0) , A(t)}{? \Gamma , A^\perp (x) , A(s x) }
22 105 adas
%\]
23 105 adas
%
24 105 adas
%We give all the various cut-reduction cases in the following section but first we give a simple cut-elimination argument.
25 105 adas
%
26 105 adas
%\subsection{A basic (free-)cut elimination argument}
27 105 adas
%We give an argument that easily scales to free-cut elimination, i.e.\ in the presence of non-logical rules.
28 105 adas
%
29 105 adas
%\newcommand{\anarrow}[2]{\overset{#1}{\underset{#2}{\longrightarrow}}}
30 105 adas
%\newcommand{\cutredlin}{\mathit{ma}}
31 105 adas
%\newcommand{\cutredexp}{exp}
32 105 adas
%
33 105 adas
%\begin{definition}
34 105 adas
%	Let $\anarrow{}{\cutredexp}$ denote the reduction steps concerning exponential cuts, and $\anarrow{}{\cutredlin}$ be the set of cut-reduction steps concerning multiplicative and additive cuts.
35 105 adas
%\end{definition}
36 105 adas
%
37 105 adas
%\newcommand{\rk}{\mathsf{rk}}
38 105 adas
%	\renewcommand{\deg}{\mathsf{deg}}
39 105 adas
%\begin{definition}
40 105 adas
%	[Measures]
41 105 adas
%	For a $\anarrow{}{\cutredlin}$-redex $r$, let its \emph{degree} $\deg( r)$ be the number of logical connectives or quantifiers in its cut-formula. For a proof $\pi$, its \emph{degree} $\deg( \pi)$ is the multiset of the degree of its redexes.
42 105 adas
%\end{definition}
43 105 adas
%
44 105 adas
%\begin{proposition}
45 105 adas
%If $\pi$ is not $\anarrow{}{\cutredlin}$-normal then there is a derivation $L:\pi \anarrow{*}{\cutredlin} \pi'$ such that $\deg(\pi')< \deg(\pi)$.
46 105 adas
%\end{proposition}
47 105 adas
%\begin{proof}
48 105 adas
%	First let us show the statement in the special case that $\pi$ contains precisely one $\cut$-inference as its final step, by induction on $|\pi|$. Each commutative $\anarrow{}{\cutredlin}$-step results in us being able to apply the inductive hypothesis to smaller proofs,- in the case of $\vlan $ two smaller proofs. Each key $\anarrow{}{\cutredlin}$-case strictly reduces the degree of the proof. Consequently we can eventually transform $\pi$ to a proof $\pi'$ which has possibly several cuts of smaller degree, as required.
49 105 adas
%
50 105 adas
%	Now to the general case, we simply apply the above procedure to the subproof above a topmost cut in $\pi$.
51 105 adas
%\end{proof}
52 105 adas
%\begin{corollary}
53 105 adas
%	$\anarrow{}{\cutredlin}$ is weakly normalising.
54 105 adas
%\end{corollary}
55 105 adas
%
56 105 adas
%
57 105 adas
%\newcommand{\cntdown}{\mathit{cn}}
58 105 adas
%\begin{definition}
59 105 adas
%	[Lazy contraction]
60 105 adas
%	Let $\anarrow{}{\cntdown}$ comprise of the following reduction steps:
61 105 adas
%	\begin{enumerate}
62 105 adas
%		\item The commuting steps,
63 105 adas
%			\[
64 105 adas
%			\vlderivation{
65 105 adas
%				\vlin{\rho}{}{\Gamma', ?A, }{
66 105 adas
%					\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ? A, ? A}}
67 105 adas
%				}
68 105 adas
%			}
69 105 adas
%			\quad\to \quad
70 105 adas
%			\vlderivation{
71 105 adas
%				\vlin{\cntr}{}{\Gamma', ?A}{
72 105 adas
%					\vlin{\rho}{}{\Gamma', ?A, ?A}{\vlhy{\Gamma, ? A, ? A}}
73 105 adas
%				}
74 105 adas
%			}
75 33 adas
%			\]
76 105 adas
%			for each unary rule $\rho$.
77 105 adas
%			\item
78 105 adas
%			The key steps:
79 105 adas
%			\[
80 105 adas
%			\begin{array}{rcl}
81 105 adas
%			\vlderivation{
82 105 adas
%				\vlin{\cntr}{}{\Gamma, ?A}{
83 105 adas
%					\vlin{\wk}{}{\Gamma, ?A, ?A}{\vlhy{\Gamma, ?A}}
84 105 adas
%				}
85 105 adas
%			}
86 105 adas
%			\quad &\to & \quad
87 105 adas
%			\Gamma, ?A
88 105 adas
%%			\]
89 105 adas
%%			and
90 105 adas
%%			\[
91 105 adas
%\\
92 105 adas
%\noalign{\smallskip}
93 105 adas
%				\vlderivation{
94 105 adas
%					\vlin{\wk}{}{\Gamma, ?A, ?A}{
95 105 adas
%						\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ?A, ?A}}
96 105 adas
%					}
97 105 adas
%				}
98 105 adas
%				\quad &\to& \quad
99 105 adas
%				\Gamma, ?A, ?A
100 105 adas
%							\end{array}
101 105 adas
%			\].
102 105 adas
%\item The commuting steps,
103 33 adas
%\[
104 33 adas
%	\vlderivation{
105 105 adas
%		\vliin{\rho}{}{\Gamma ,?A}{
106 105 adas
%			\vlin{\cntr}{}{\Gamma_1, ?A}{\vlhy{\Gamma_1, ?A, ?A}}
107 105 adas
%		}{\vlhy{\Gamma_2}}
108 33 adas
%	}
109 105 adas
%	\quad \to \quad
110 33 adas
%	\vlderivation{
111 105 adas
%		\vlin{\cntr}{}{\Gamma, ?A}{
112 105 adas
%			\vliin{\rho}{}{\Gamma,?A, ?A}{\vlhy{\Gamma_1, ?A, ?A}}{ \vlhy{\Gamma_2} }
113 33 adas
%		}
114 33 adas
%	}
115 105 adas
%\]
116 105 adas
%%\[
117 105 adas
%%\begin{array}{rcl}
118 105 adas
%%	\vlderivation{
119 105 adas
%%		\vliin{\land}{}{\Gamma, \Delta, ?A, B\land C}{
120 105 adas
%%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
121 105 adas
%%		}{\vlhy{\Delta, C}}
122 105 adas
%%	}
123 105 adas
%%	\quad &\to &\quad
124 105 adas
%%	\vlderivation{
125 105 adas
%%		\vlin{\cntr}{}{\Gamma, \Delta, ?A, B\land C}{
126 105 adas
%%			\vliin{\land}{}{\Gamma, \Delta, ?A, ?A, B\land C}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, C} }
127 105 adas
%%		}
128 105 adas
%%	}
129 105 adas
%%%	\]
130 105 adas
%%%
131 105 adas
%%%	\[
132 105 adas
%%\\
133 105 adas
%%\noalign{\smallskip}
134 105 adas
%%	\vlderivation{
135 105 adas
%%		\vliin{\cut}{}{\Gamma, \Delta, ?A}{
136 105 adas
%%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
137 105 adas
%%		}{\vlhy{\Delta, \lnot{B}}}
138 105 adas
%%	}
139 105 adas
%%	\quad &\to& \quad
140 105 adas
%%	\vlderivation{
141 105 adas
%%		\vlin{\cntr}{}{\Gamma, \Delta, ?A}{
142 105 adas
%%			\vliin{\cut}{}{\Gamma, \Delta, ?A, ?A}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, \lnot{B}} }
143 105 adas
%%		}
144 105 adas
%%	}
145 105 adas
%%\end{array}
146 105 adas
%%\]
147 105 adas
%for each binary rule $\rho \in \{ \land, \cut \}$.
148 105 adas
%\item The commuting step:
149 105 adas
%	\[
150 33 adas
%	\vlderivation{
151 105 adas
%		\vliin{\vlan}{}{\Gamma, ?A, B\vlan C}{
152 33 adas
%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
153 105 adas
%		}{\vlhy{\Gamma, ?A, B}}
154 33 adas
%	}
155 105 adas
%	\quad \to \quad
156 33 adas
%	\vlderivation{
157 105 adas
%		\vlin{\cntr}{}{\Gamma, ?A, B\vlan C}{
158 105 adas
%			\vliin{\vlan}{}{\Gamma, ?A, ?A, B\vlan C}{\vlhy{\Gamma, ?A, ?A, B}}{
159 105 adas
%				\vlin{\wk}{}{\Gamma, ?A, ?A, C}{\vlhy{\Gamma, ?A, C}}
160 105 adas
%			}
161 33 adas
%		}
162 33 adas
%	}
163 105 adas
%	\]
164 105 adas
%	\end{enumerate}
165 105 adas
%	For binary rules:
166 105 adas
%
167 105 adas
%\end{definition}
168 105 adas
%\begin{proposition}
169 105 adas
%	$\anarrow{}{\cntdown}$ is weakly normalising
170 105 adas
%	, modulo $\cntr$-$\cntr$ redexes,
171 105 adas
%	and degree-preserving.
172 105 adas
%	If $\pi$ is $\anarrow{}{\cutredlin}$-normal and $\pi \downarrow_\cntdown \pi'$, then so is $\pi'$.
173 105 adas
%\end{proposition}
174 105 adas
%\begin{proof}
175 105 adas
%	By induction on the number of redexes in a proof. Start with bottommost redex, by induction on number of inference steps beneath it.
176 105 adas
%\end{proof}
177 105 adas
%
178 105 adas
%\begin{remark}
179 105 adas
%	Only weakly normalising since $\cntr$ can commute with $\cntr$, allowing cycles.
180 105 adas
%\end{remark}
181 105 adas
%
182 105 adas
%\begin{proposition}
183 105 adas
%	If $\pi$ is $\anarrow{}{\cutredexp}$-reducible but $\anarrow{}{\cutredlin}$- and $\anarrow{}{\cntdown}$-normal then there is a derivation $H:\pi \anarrow{*}{\cutredexp} \pi'$ such that $\deg (\pi')<\deg(\pi)$.
184 105 adas
%\end{proposition}
185 105 adas
%
186 105 adas
%
187 105 adas
%
188 105 adas
%\subsection{Base cases}
189 105 adas
%
190 105 adas
%\[
191 105 adas
%\vlderivation{
192 105 adas
%\vliin{\cut}{}{ \Gamma,a }{ \vlhy{\Gamma,a} }{ \vlin{\id}{}{a,a^\bot}{ \vlhy{} } }
193 105 adas
%}
194 105 adas
%\quad\to\quad
195 105 adas
%\vlderivation{
196 105 adas
%\Gamma,a
197 105 adas
%}
198 33 adas
%\]
199 105 adas
%
200 33 adas
%\[
201 33 adas
%\vlderivation{
202 105 adas
%\vliin{\cut}{}{\Gamma}{ \vlin{\bot}{}{ \Gamma,\bot }{ \vlhy{\Gamma} } }{ \vlin{1}{}{1}{ \vlhy{} } }
203 33 adas
%}
204 105 adas
%\quad\to\quad
205 105 adas
%\vlderivation{
206 105 adas
%\Gamma
207 33 adas
%}
208 33 adas
%\]
209 105 adas
%
210 33 adas
%\[
211 33 adas
%\vlderivation{
212 105 adas
%\vliin{\cut}{}{ \Gamma,\Delta,\top }{ \vlin{\top}{}{ \Gamma,\top,0 }{ \vlhy{} } }{ \vlhy{\Delta , \top } }
213 33 adas
%}
214 33 adas
%\quad\to\quad
215 105 adas
%\vlinf{\top}{}{ \Gamma,\Delta,\top }{}
216 105 adas
%\]
217 105 adas
%
218 105 adas
%\subsection{Commutative cases}
219 105 adas
%These are the cases when the principal formula of a step is not active for the cut-step below.
220 105 adas
%
221 105 adas
%\begin{enumerate}
222 105 adas
%\item The cut-step is immediately preceded by an initial step. Note that only the case for $\top$ applies:
223 105 adas
%\[
224 33 adas
%\vlderivation{
225 105 adas
%\vliin{\cut}{}{\Gamma,\Delta,\top}{
226 105 adas
%\vlin{\top}{  }{ \Gamma,\top,A }{ \vlhy{} }
227 105 adas
% }{ \vlhy{\Delta,A^\bot } }
228 105 adas
%}
229 105 adas
%\quad\to\quad
230 105 adas
%\vlinf{\top}{}{ \Gamma,\Delta,\top }{}
231 105 adas
%\]
232 105 adas
%%Notice that this commutation eliminates the cut entirely and preserves the height of all cuts below.
233 105 adas
%\item\label{CaseCommOneStep} A cut-step is immediately preceded by a step $\rho$ with exactly one premiss:
234 105 adas
%\[
235 105 adas
%\vlderivation{
236 105 adas
%\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}}
237 105 adas
%}
238 105 adas
%\]
239 105 adas
%We have three subcases:
240 105 adas
%\begin{enumerate}
241 105 adas
%\item\label{subcase:unary-commutation-vanilla}
242 105 adas
%%$\Delta$ consists of only $?$-ed formulae or
243 105 adas
%If $\rho \notin \{! , \indr \}$ then we can simply permute as follows:
244 105 adas
%\begin{equation}
245 105 adas
%\label{eqn:com-case-unary-simple}
246 105 adas
%\vlderivation{
247 105 adas
%\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}}
248 105 adas
%}
249 105 adas
%\quad \to \quad
250 105 adas
%\vlderivation{
251 105 adas
%\vlin{\rho}{}{\Gamma',\Delta}{
252 105 adas
%\vliin{\cut}{}{\Gamma,\Delta}{\vlhy{\Gamma,A}}{\vlhy{A^\bot , \Delta}}
253 105 adas
%}
254 105 adas
%}
255 105 adas
%\end{equation}
256 105 adas
%(If $\rho$ was $\forall$ then we might need to rename some free variables in $\Delta$.)
257 105 adas
%\item $\rho $ is a $!$-step. Therefore $\Gamma$ has the form $? \Sigma , B$ and $A$ has the form $?C$, yielding the following situation:
258 105 adas
%\[
259 105 adas
%\vlderivation{
260 105 adas
%\vliin{\cut}{}{? \Sigma, !B, \Delta }{
261 105 adas
%\vlin{!}{}{? \Sigma, !B , ?C}{\vlhy{?\Sigma , B , ?C}  }
262 33 adas
%}{
263 105 adas
%\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}}
264 33 adas
%}
265 33 adas
%}
266 105 adas
%\]
267 105 adas
%Now, if $!C^\perp$ is principle for $\rho'$ then $\rho'\in \{! , \indr\}$ and so $\Delta $ must be $?$-ed; in this case we are able to apply the transformation \eqref{eqn:com-case-unary-simple}. Otherwise $A^\perp$ is not principal for $\rho'$ and so $\rho' \notin \{! , \indr \}$, which means we can apply \ref{subcase:unary-commutation-vanilla} along this side of the subproof.
268 105 adas
%\item $\rho$ is a $\indr$-step. Therefore $\Gamma$ has the form $? \Sigma , B^\perp(x), B(s x) $ and $A$ has the form $?C$, and the argument is similar to the case above.
269 105 adas
%% yielding the following situation:
270 105 adas
%%\[
271 105 adas
%%\vlderivation{
272 105 adas
%%	\vliin{\cut}{}{? \Sigma, B^\perp (0) , B(t), \Delta }{
273 105 adas
%%		\vlin{\indr}{}{? \Sigma, B^\perp (0) , B(t) , ?C}{\vlhy{?\Sigma , B^\perp(x) , B(s x) , ?C}  }
274 105 adas
%%	}{
275 105 adas
%%	\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}}
276 105 adas
%%}
277 105 adas
%%}
278 105 adas
%%\]
279 105 adas
%\end{enumerate}
280 105 adas
%
281 105 adas
%
282 105 adas
%
283 105 adas
%\item A cut-step is immediately preceded by a $\vlte $-step:
284 105 adas
%\[
285 105 adas
%\vlderivation{
286 105 adas
%\vliin{\cut}{}{\Gamma,\Delta,\Sigma,A\vlte B }{
287 105 adas
%\vliin{\vlte}{}{\Gamma,\Delta,A\vlte B,C }{\vlhy{\Gamma,A,C}}{\vlhy{\Delta,B}}
288 105 adas
%}{\vlhy{ \Sigma , C^\bot  }}
289 33 adas
%}
290 105 adas
%\quad\to\quad
291 105 adas
%\vlderivation{
292 105 adas
%\vliin{\vlte}{}{\Gamma,\Delta,\Sigma,A\vlte B}{
293 105 adas
%\vliin{\cut}{}{\Gamma,\Sigma,A}{\vlhy{\Gamma,A,C}}{\vlhy{\Sigma,C^\bot}}
294 105 adas
%}{\vlhy{\Delta,B}}
295 105 adas
%}
296 33 adas
%\]
297 105 adas
%%Notice that this commutation might increase the height of any cuts below along the right branch of the indicated cut, but decreases the height along the left branch.
298 105 adas
%\item\label{CommCaseAmpersand} A cut-step is immediately preceded by a $\vlan$-step.
299 33 adas
%\[
300 33 adas
%\vlderivation{
301 105 adas
%\vliin{\cut}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} }
302 33 adas
%}
303 33 adas
%\quad\to\quad
304 33 adas
%\vlderivation{
305 105 adas
%\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{
306 105 adas
%\vliin{cut}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } }
307 105 adas
%}{
308 105 adas
%\vliin{ \cut }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} }
309 33 adas
%}
310 105 adas
%}
311 33 adas
%\]
312 105 adas
%\item (No rule for cuts commuting with cuts.)
313 105 adas
%%A cut-step is immediately preceded by another cut-step:
314 33 adas
%\[
315 33 adas
%\vlderivation{
316 105 adas
%	\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{
317 105 adas
%		\vliin{\cut}{}{\Gamma, \Delta, B}{\vlhy{\Gamma, A}}{\vlhy{\Delta, \lnot{A}, B}}
318 105 adas
%		}{\vlhy{\Sigma, \lnot{B}}}
319 105 adas
%	}
320 105 adas
%	\quad\to\quad
321 105 adas
%\vlderivation{
322 105 adas
%	\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{\vlhy{\Gamma, A}}{
323 105 adas
%		\vliin{\cut}{}{\Delta, \Sigma, \lnot{A}}{\vlhy{\Delta, \lnot{A}, B}}{\vlhy{\Sigma, \lnot{B}}}
324 105 adas
%		}
325 105 adas
%	}
326 105 adas
%\]
327 105 adas
%\end{enumerate}
328 105 adas
%
329 105 adas
%
330 105 adas
%
331 105 adas
%\subsection{Key cases: structural steps}
332 105 adas
%%[THIS SECTION MIGHT NOT BE NECESSARY]
333 105 adas
%We attempt to permute cuts on exponential formulae over structural steps whose principal formula is active for the cut.
334 105 adas
%
335 105 adas
%We use the commutative case \ref{CaseCommOneStep} to assume that the topmost cut-step in a sequence has already been permuted up to its origin on the $!$-side.
336 105 adas
%
337 105 adas
%We have two cases.
338 105 adas
%\begin{enumerate}
339 105 adas
%\item\label{StructStepCont} The structural step preceding the cut is a weakening:
340 105 adas
%\[
341 105 adas
%\vlderivation{
342 105 adas
%\vliin{\cut}{}{?\Gamma,\Delta}{ \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } }{ \vlin{w}{}{ ?A^\bot }{ \vlhy{\Delta	} } }
343 33 adas
%}
344 105 adas
%\quad\to\quad
345 105 adas
%\vlinf{w}{}{?\Gamma,\Delta}{ \Delta }
346 105 adas
%\]
347 105 adas
%%\item The structural step preceding the cut is a contraction:
348 105 adas
%%\[
349 105 adas
%%\vlderivation{
350 105 adas
%%\vliin{\cut}{}{ ?\Gamma,\Delta }{
351 105 adas
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
352 105 adas
%%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot ,  \Delta} } }
353 105 adas
%%}
354 105 adas
%%\quad\to\quad
355 105 adas
%%\vlderivation{
356 105 adas
%%\vliq{c}{}{?\Gamma, \Delta}{
357 105 adas
%%\vliin{\cut}{}{?\Gamma, ?\Gamma,\Delta }{
358 105 adas
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
359 105 adas
%%}{
360 105 adas
%%\vliin{\cut}{}{?\Gamma,?A^\bot , \Delta }{
361 105 adas
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
362 105 adas
%%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } }
363 105 adas
%%}
364 105 adas
%%}
365 105 adas
%%}
366 105 adas
%%\]
367 105 adas
%%OR use a multicut:
368 105 adas
%%\[
369 105 adas
%%\vlderivation{
370 105 adas
%%\vliin{\cut}{}{ ?\Gamma,\Delta }{
371 105 adas
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
372 105 adas
%%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot ,  \Delta} } }
373 105 adas
%%}
374 105 adas
%%\quad\to\quad
375 105 adas
%%\vlderivation{
376 105 adas
%%\vliin{\multicut}{}{?\Gamma,?A^\bot , \Delta }{
377 105 adas
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
378 105 adas
%%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } }
379 105 adas
%%}
380 105 adas
%%\]
381 105 adas
%\item The structural step preceding a cut is a contraction:
382 105 adas
%\[
383 105 adas
%\vlderivation{
384 105 adas
%	\vliin{\cut}{}{?\Gamma, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{
385 105 adas
%		\vlin{\cntr}{}{ ?A,\Sigma }{ \vlhy{ ?A,?A,\Sigma } }
386 105 adas
%	}
387 33 adas
%}
388 33 adas
%\quad\to\quad
389 33 adas
%\vlderivation{
390 105 adas
%	\vliq{\cntr}{}{ ?\Gamma,\Sigma }{
391 105 adas
%		\vliin{\cut}{}{ ?\Gamma,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{
392 105 adas
%			\vliin{\cut}{}{ ?A,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,\Sigma } }
393 105 adas
%		}
394 105 adas
%	}
395 33 adas
%}
396 105 adas
%\]
397 105 adas
%%\item The structural step preceding a cut is a parallel contraction:
398 105 adas
%%\[
399 105 adas
%%\vlderivation{
400 105 adas
%%\vliin{\cut}{}{?\Gamma,?\Delta, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{
401 105 adas
%%\vlin{}{}{ ?A,?\Delta,\Sigma }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } }
402 105 adas
%%}
403 105 adas
%%}
404 105 adas
%%\quad\to\quad
405 105 adas
%%\vlderivation{
406 105 adas
%%\vlin{}{}{ ?\Gamma,?\Delta,\Sigma }{
407 105 adas
%%\vliin{\cut}{}{ ?\Gamma,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{
408 105 adas
%%\vliin{\cut}{}{ ?A,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } }
409 105 adas
%%}
410 105 adas
%%}
411 105 adas
%%}
412 105 adas
%%\]
413 105 adas
%\end{enumerate}
414 105 adas
%
415 105 adas
%\subsection{Key cases: logical steps}
416 105 adas
%Finally, once all cuts have been permuted maximally on both sides, we have the cases when the cut-formula is principal for a preceding logical step on both sides. We have three cases, one for every pair of connectives.
417 105 adas
%\begin{enumerate}
418 105 adas
%\item The cut-formula is multiplicative:
419 105 adas
%\[
420 105 adas
%\vlderivation{
421 105 adas
%\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{
422 105 adas
%\vliin{\vlte}{}{ \Gamma,\Delta,A\vlte B }{ \vlhy{\Gamma,A} }{ \vlhy{\Delta,B} }
423 105 adas
%}{ \vlin{\vlpa}{}{ \Sigma, A^\bot \vlpa B^\bot }{ \vlhy{\Sigma , A^\bot , B^\bot} } }
424 33 adas
%}
425 105 adas
%\quad\to\quad
426 105 adas
%\vlderivation{
427 105 adas
%\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ \vlhy{\Gamma,A} }{
428 105 adas
%\vliin{\cut}{}{ \Delta,\Sigma,A^\bot }{ \vlhy{\Delta,B} }{ \vlhy{\Sigma , A^\bot,B^\bot } }
429 33 adas
%}
430 105 adas
%}
431 33 adas
%\]
432 105 adas
%\item The cut-formula is additive,
433 105 adas
%\[
434 105 adas
%\vlderivation{
435 105 adas
%\vliin{\cut}{}{ \Gamma,\Delta }{
436 105 adas
%\vliin{\vlan}{}{ \Gamma,A\vlan B }{ \vlhy{\Gamma,A} }{ \vlhy{\Gamma,B} }
437 105 adas
% }{ \vlin{\vlor}{}{ \Delta,A^\bot\vlor B^\bot }{ \vlhy{\Delta, A^\bot } } }
438 105 adas
%}
439 105 adas
%\quad\to\quad
440 105 adas
%\vliinf{\cut}{}{ \Gamma,\Delta }{ \Gamma,A }{ \Delta,A^\bot }
441 105 adas
%\]
442 105 adas
%where the case for the other $\vlor$-rule is symmetric.
443 105 adas
%\item The cut-formula is exponential.
444 105 adas
%\[
445 105 adas
%\vlderivation{
446 105 adas
%\vliin{\cut}{}{ ?\Gamma,\Delta }{
447 105 adas
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
448 105 adas
%}{
449 105 adas
%\vlin{?}{}{ \Delta,?A^\bot }{ \vlhy{\Delta, A^\bot } }
450 105 adas
%}
451 105 adas
%}
452 105 adas
%\quad\to\quad
453 105 adas
%\vliinf{\cut}{}{ ?\Gamma,\Delta }{ ?\Gamma,A }{ \Delta,A^\bot }
454 105 adas
%\]
455 105 adas
%\item The cut-formula is quantified.
456 105 adas
%\[
457 105 adas
%\vlderivation{
458 105 adas
%	\vliin{\cut}{}{\Gamma, \Delta}{
459 105 adas
%		\vlin{\forall}{}{\Gamma, \forall x. A(x)}{\vltr{\pi(a)}{\Gamma, A(a)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}}
460 105 adas
%		}{
461 105 adas
%		\vlin{\exists}{}{\Delta, \exists x . \lnot{A}(x)}{\vlhy{\Delta, \lnot{A}(t)}}
462 105 adas
%		}
463 105 adas
%	}
464 105 adas
%	\quad \to \quad
465 105 adas
%	\vlderivation{
466 105 adas
%		\vliin{\cut}{}{\Gamma, \Delta}{
467 105 adas
%			\vltr{\pi(t)}{\Gamma, A(t)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
468 105 adas
%			}{\vlhy{\Delta, \lnot{A}(t)}}
469 105 adas
%		}
470 105 adas
%\]
471 105 adas
%\end{enumerate}
472 105 adas
%