Statistiques
| Révision :

root / CSL16 / appendix-preliminaries.tex @ 255

Historique | Voir | Annoter | Télécharger (1,65 ko)

1 113 adas
\section{Proof of Thm.~\ref{thm:deduction}, Sect.~\ref{sect:preliminaries}}
2 108 adas
\label{sect:app-preliminaries}
3 108 adas
4 113 adas
%Equality axioms:
5 113 adas
%\[
6 113 adas
% \begin{array}{rl}
7 113 adas
%\refl & \forall x . x = x \\
8 113 adas
%\symm & \forall x, y. (x = y \limp y = x )\\
9 113 adas
%\trans & \forall x , y , z . ( x = y \limp y = z \limp x = z ) \\
10 113 adas
%\subst_f & \forall \vec x , \vec y . (\vec x = \vec y \limp f(\vec x) = f(\vec y) ) \\
11 113 adas
%\subst_P & \forall \vec x , \vec y. (\vec x = \vec y \limp P(\vec x) \limp P(\vec y)  )
12 113 adas
% \end{array}
13 113 adas
% \]
14 113 adas
15 113 adas
%\begin{theorem}[Theorem \ref{thm:deduction}]
16 113 adas
%tt
17 113 adas
%\end{theorem}
18 113 adas
19 113 adas
% \begin{proof}[Proof of Thm.~\ref{thm:deduction}]
20 113 adas
Suppose $\theory \cup \{ A \}$ proves $B$ and let $\pi$ be a $\theory$-derivation with end-sequent $\seqar B$ and leaves $\seqar A$, i.e.:
21 108 adas
\[
22 113 adas
\vltreeder{\pi}{ \seqar B }{ \seqar A }{\vldots}{\seqar A}
23 113 adas
\]
24 113 adas
25 113 adas
Then construct the following $\theory$-proof of $!A \limp B$,
26 113 adas
\[
27 113 adas
\vlderivation{
28 113 adas
\vlin{\rigrul{\limp}}{}{\seqar !A \limp B}{
29 113 adas
\vltr{!A, \pi }{ !A \seqar B }{
30 113 adas
\vlin{\lefrul{!}}{}{!A \seqar A}{
31 113 adas
\vlin{\id}{}{A\seqar A}{\vlhy{}}
32 113 adas
}
33 113 adas
}{ \vlhy{\vldots} }{
34 113 adas
\vlin{\lefrul{!}}{}{!A \seqar A}{
35 113 adas
\vlin{\id}{}{A\seqar A}{\vlhy{}}
36 113 adas
}
37 113 adas
}
38 113 adas
}
39 113 adas
}
40 113 adas
\]
41 113 adas
where $!A, \pi$ is obtained by appending $!A$ to the antecedent of each sequent in $\pi$, inserting left-contraction steps when necessary. Free variable conditions are satisfied since $A$ is closed (and so also $!A$) and side-conditions are satisfied since $!A$ is a $!$-formula.
42 113 adas
43 113 adas
For the other direction simply extend any $\theory$-proof of $!A \limp B$ as follows:
44 113 adas
\[
45 113 adas
\vlderivation{
46 113 adas
\vliin{\cut}{}{ \seqar B }{
47 113 adas
\vlin{\rigrul{!}}{}{\seqar !A }{\vlhy{\seqar A}}
48 113 adas
}{
49 113 adas
\vliq{ \inv{{\limp}} }{}{ !A \seqar B }{ \vlhy{\seqar !A \limp B }}
50 113 adas
}
51 113 adas
}
52 113 adas
\]
53 113 adas
54 113 adas
55 113 adas
% \end{proof}