root / CSL16 / appendix-arithmetic.tex @ 255
Historique | Voir | Annoter | Télécharger (4,35 ko)
1 | 113 | adas | \section{Proofs and further remarks for Sect.~\ref{sect:arithmetic}} |
---|---|---|---|
2 | 108 | adas | \label{sect:app-arithmetic} |
3 | 108 | adas | |
4 | 108 | adas | \begin{proof}[Proof of Prop.~\ref{prop:equiv-rules}] |
5 | 108 | adas | We give only the case for induction, the others being routine. |
6 | 108 | adas | |
7 | 108 | adas | First, let us assume the induction axiom and derive the rule: |
8 | 108 | adas | \[ |
9 | 113 | adas | \hspace{-2.5em} |
10 | 113 | adas | \small |
11 | 108 | adas | \vlderivation{ |
12 | 108 | adas | \vliq{\cntr}{}{ !\word (t) , !\Gamma, A(\epsilon) \seqar A(t) , ?\Delta }{ |
13 | 108 | adas | \vlin{2\cdot\cut}{}{!\word(t) , !\Gamma, !\Gamma, A(\epsilon) \seqar A(t) , ?\Delta, ?\Delta }{ |
14 | 108 | adas | \vlhy{ |
15 | 108 | adas | { |
16 | 108 | adas | \left\{ |
17 | 108 | adas | \vlderivation{ |
18 | 108 | adas | \vlin{\rigrul{!}}{}{ !\Gamma \seqar ! \forall x^{!\word} . ( A(x) \limp A(\succ_i x) ) , ?\Delta }{ |
19 | 108 | adas | \vlin{\rigrul{\forall}}{}{ !\Gamma \seqar \forall x^{!\word} . ( A(x) \limp A(\succ_i x) ) , ?\Delta }{ |
20 | 108 | adas | \vlin{2\cdot\rigrul{\limp}}{}{ !\Gamma \seqar !\word (a) \limp A(a) \limp A(\succ_i a) , ?\Delta }{\vlhy{ !\word (a) ,!\Gamma , A(a) \seqar A(\succ_i a) , ?\Delta }} |
21 | 108 | adas | } |
22 | 108 | adas | } |
23 | 108 | adas | } |
24 | 108 | adas | \right\}_{i=0,1} |
25 | 108 | adas | } |
26 | 108 | adas | \qquad |
27 | 108 | adas | { |
28 | 108 | adas | \vlderivation{ |
29 | 108 | adas | \vliq{\inv{\forall} }{}{ !\word (t), A(\epsilon) ,\{!\forall x^{!\word} . ( A(x) \limp A(\succ_0 x) )\}_{i=0,1} \seqar A(t) }{ |
30 | 108 | adas | \vliq{\inv{\limp}}{}{ A(\epsilon) , \{!\forall x^{!\word} . ( A(x) \limp A(\succ_0 x) )\}_{i=0,1} \seqar \forall x^{!\word} .A(x) }{ |
31 | 108 | adas | \vlhy{ |
32 | 108 | adas | \seqar |
33 | 108 | adas | %A(\epsilon) |
34 | 108 | adas | %\limp !(\forall x^{!\word} . ( A(x) \limp A(\succ_0 x) ) ) |
35 | 108 | adas | %\limp !(\forall x^{!\word} . ( A(x) \limp A(\succ_1 x) ) ) |
36 | 108 | adas | %\limp \forall x^{!\word} . A(x) |
37 | 108 | adas | \ind |
38 | 108 | adas | } |
39 | 108 | adas | } |
40 | 108 | adas | } |
41 | 108 | adas | } |
42 | 108 | adas | } |
43 | 108 | adas | } |
44 | 108 | adas | } |
45 | 108 | adas | } |
46 | 108 | adas | } |
47 | 108 | adas | \] |
48 | 108 | adas | Now we assume the induction rule and derive the axiom, |
49 | 108 | adas | \[ |
50 | 108 | adas | \vlderivation{ |
51 | 108 | adas | \vlin{3\cdot\rigrul{\limp}}{}{\seqar \ind }{ |
52 | 108 | adas | \vlin{\rigrul{\limp},\rigrul{\forall}}{}{\{ !\forall x^{!\word} . ( A(x) \limp A(\succ_i x) ) \}_{i=0,1} , A(\epsilon) \seqar \forall x^{!\word} . A(x) }{ |
53 | 108 | adas | \vlin{\ind}{}{!\word (t) , \{ !\forall x^{!\word} . ( A(x) \limp A(\succ_i x) ) \}_{i=0,1} \seqar A(b) }{ |
54 | 108 | adas | \vlhy{ |
55 | 108 | adas | \left\{ |
56 | 108 | adas | \vltreeder{\pi_i}{ !\word (a) , \{ !\forall x^{!\word} . ( A(x) \limp A(\succ_i x) ) \}_{i=0,1} , A(a) \seqar A(\succ_i a) }{\quad}{}{\quad } |
57 | 108 | adas | \right\}_{i=0,1} |
58 | 108 | adas | } |
59 | 108 | adas | } |
60 | 108 | adas | } |
61 | 108 | adas | } |
62 | 108 | adas | } |
63 | 108 | adas | \] |
64 | 108 | adas | where the proofs $\pi_i$ are obtainable from just logical rules. |
65 | 108 | adas | \end{proof} |
66 | 108 | adas | |
67 | 120 | adas | %\paragraph*{Formulation of induction with designated premise for base case} |
68 | 120 | adas | %Here is the induction rule when there is a designated premise for the base case. |
69 | 120 | adas | %\begin{equation} |
70 | 120 | adas | %\label{eqn:ind-rul-base-prem} |
71 | 120 | adas | %\vliiinf{}{}{ !\word(t) , !\Gamma \seqar A(t), ?\Delta }{!\Gamma \seqar A(\epsilon)}{ !\word(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta }{ !\word(a) , !\Gamma, A(a) \seqar A(\succ_1 a) , ?\Delta } |
72 | 120 | adas | %\end{equation} |
73 | 120 | adas | %As mentioned, this is not equivalent to the formulation given, due to the linear logic setting. From an axiomatic point of view, it is equivalent to the $\ind$ axiom with $!A(\epsilon)$ in place of $A(\epsilon)$. |
74 | 110 | adas | |
75 | 113 | adas | %Proof that coherent ESs have a model: |
76 | 113 | adas | %\begin{proof}[Proof of Prop.~\ref{prop:eq-spec-model}] |
77 | 113 | adas | % %\todo{ take $\Word \cup \{\bot\}$ or use completeness? Omit if no time. } |
78 | 113 | adas | % Consider the standard model $\Word $ extended by an element $\infty$ with $\succ_0 \infty = \succ_1 \infty = \infty$. Setting $\word = \Word$ means this model satisfies $\basic$. Now, for each function symbol $f$, define $f(\sigma) = \tau$ for every $\sigma, \tau \in \Word$ for which this equation is forced by $\eqspec$. Otherwise define $f(\sigma) = f(\infty) = \infty$. |
79 | 113 | adas | %% \todo{replace with argument using completeness.} |
80 | 113 | adas | %\end{proof} |
81 | 110 | adas | |
82 | 113 | adas | %Proof that guarded quantifiers are compatible with free-cut elimination: |
83 | 110 | adas | \begin{proof}[Proof of Cor.~\ref{cor:free-cut-elim-guarded-quants}] |
84 | 110 | adas | First translate the proof $\pi$ into the proof $\pi_0$ where all guarded quantifiers rules have been replaced by their derivation, and say that two rule instances in $\pi_0$ are \textit{siblings} if they come from the same derivation of a guarded quantifier rule. So in $\pi_0$ any two sibling rules are consecutive. Now observe that in the free-cut elimination procedure: |
85 | 110 | adas | \begin{itemize} |
86 | 110 | adas | \item when we do a commutation step of a cut with a $\forall$ (resp. $\exists$ rule) that has a sibling, we can follow it by another commutation of cut with its sibling, |
87 | 110 | adas | \item when we do a logical cut-elimination step on a $\forall$ (resp. $\exists$ rule) that has a sibling, we can follow it by a logical cut-elimination step on its sibling, as illustrated by Prop. \ref{prop:logicalstepguardedquantifer}. |
88 | 110 | adas | \end{itemize} |
89 | 110 | adas | In this way sibling rules remain consecutive in the proof-tree throughout the reduction, and the procedure transforms the proof into one with only anchored cuts. |
90 | 110 | adas | \end{proof} |