root / CSL17 / preliminaries.tex @ 254
Historique | Voir | Annoter | Télécharger (16,09 ko)
1 |
|
---|---|
2 |
\section{Preliminaries} |
3 |
\label{sect:prelims} |
4 |
We introduce the polynomial hierarchy and its basic properties, then Bellantoni's characterisation of it based on safe recursion and minimisation \cite{bellantoni1995fph}. |
5 |
|
6 |
%\anupam{Should recall polymax bounded functions and the polychecking lemma, e.g.\ from Bellantoni's FPH paper or thesis. Quite important, even if proof not given.} |
7 |
|
8 |
\subsection{Polynomial hierarchy} |
9 |
%(include closure properties) |
10 |
|
11 |
\begin{definition} |
12 |
Given $i\geq 0$, a language $L$ belongs to the class $\sigp{i}$ if there exists a polynomial time predicate $A$ and a polynomial $q$ such that: |
13 |
$$ x \in L \Leftrightarrow \exists y_1 \in \{0,1\}^{q(\size{x})}\forall y_2 \in \{0,1\}^{q(\size{x})}\dots Q_iy_i\in \{0,1\}^{q(\size{x})}\ A(x,y_1,\dots,y_i)=1$$ |
14 |
where $Q_i=\forall$ (resp. $Q_i=\exists$) if $i$ is even (resp. odd). |
15 |
|
16 |
The class $\pip{i}$ is defined similarly but with first quantifier $\forall$ instead of $\exists$. |
17 |
\end{definition} |
18 |
In particular: $\sigp{0}=\pip{0}=\ptime$, $\sigp{1}=\np$, $\pip{1}=\conp$. Note that for any $i$ we have $\pip{i}=\mathbf{co}\sigp{i}$ and $\sigp{i}\subseteq \pip{i+1}$, $\pip{i}\subseteq \sigp{i+1}$. |
19 |
|
20 |
The polynomial hierarchy is defined as $\ph:=\cup_i \sigp{i}$, and we also have $\ph=\cup_i \pip{i}$. |
21 |
|
22 |
Given a language $L$ we denote as $\fptime(L)$ the class of functions computable by a deterministic |
23 |
polynomial time Turing machine with oracle $L$. |
24 |
|
25 |
We now define the following function classes: |
26 |
\[ |
27 |
\begin{array}{lcl} |
28 |
\fphi{i+1} &:= & \fptime(\sigp{i}),\\ |
29 |
\fph &:=& \cup_i \fphi{i}. |
30 |
\end{array} |
31 |
\] |
32 |
Notice that $ \fphi{i+1} = \fptime(\pip{i})= \fptime(\sigp{i}\cup \pip{i})$. |
33 |
|
34 |
\subsection{Bellantoni-Cook characterisation of $\fptime$ using predicative recursion} |
35 |
%(perhaps compare with Cobham's using limited recursion) |
36 |
% |
37 |
%\anupam{copied below from last year's paper} |
38 |
|
39 |
We recall the Bellantoni-Cook algebra $\bc$ of functions defined by \emph{safe} (or \emph{predicative}) recursion on notation \cite{BellantoniCook92}. |
40 |
These will be employed for proving both the soundness and completeness results later on. |
41 |
|
42 |
We consider functions $f$ over the domain $\Nat$ with sorted arguments $(\vec u ; \vec x)$, where the inputs $\vec u$ are called \textit{normal} and $\vec x$ are called \textit{safe}. |
43 |
%Each symbol is given with an arity $m$ and a number $n\leq m$ of normal arguments, and will be denoted as $f(\vec{u};\vec{x})$ where $\vec{u}$ (resp. $\vec{x}$) are the normal (resp. safe) arguments. |
44 |
%We say that an expression is well-sorted if the arities of function symbols in it is respected. |
45 |
|
46 |
%\patrick{Note that below I used the terminology 'BC programs', to distinguish them from 'functions' in the extensional sense, which I find clearer. But if you prefer to keep 'BC functions' it is all right for me.} |
47 |
\begin{definition} |
48 |
[$\bc$ programs] |
49 |
$\bc$ contains the following initial functions: |
50 |
% \paragraph{Initial functions} |
51 |
% The initial functions are: |
52 |
|
53 |
\begin{enumerate} |
54 |
\item The constant functions $0 (\vec u ; \vec x) \dfn 0$, for each $|\vec u|$ and $| \vec x|$. |
55 |
\item The projection functions $\pi^{m,n}_k ( a_1 , \dots , a_m ; a_{m+1} , \dots, a_{m+n} ) := a_k$ for $1 \leq k \leq m+n$. |
56 |
\item The successor functions $\succ i ( ; x) \dfn 2x +i$ for $i = 0,1$. |
57 |
\item The predecessor function $\pred (; x) \dfn \hlf{x}$. |
58 |
\item The conditional function |
59 |
\( |
60 |
\cond(;x,y,z) |
61 |
\dfn |
62 |
\begin{cases} |
63 |
y & x = 0\ \mathrm{mod}\ 2 \\ |
64 |
z & x = 1\ \mathrm{mod}\ 2 |
65 |
\end{cases} |
66 |
\) |
67 |
\end{enumerate} |
68 |
|
69 |
\medskip |
70 |
\noindent |
71 |
$\bc$ is closed under the following operations: |
72 |
|
73 |
|
74 |
|
75 |
\begin{enumerate} |
76 |
\setcounter{enumi}{5} |
77 |
\item Predicative recursion on notation (PRN). If $g, h_0, h_1 $ are in BC then so is $f$ defined by, |
78 |
\[ |
79 |
\begin{array}{rcll} |
80 |
f(0, \vec v ; \vec x) & := & g(\vec v ; \vec x) & \\ |
81 |
f (\succ 0 u , \vec v ; \vec x ) & := & h_0 ( u , \vec v ; \vec x , f (u , \vec v ; \vec x) ) & \text{when $u \neq 0$} \\ |
82 |
f (\succ 1 u , \vec v ; \vec x ) & := & h_1 ( u , \vec v ; \vec x , f (u , \vec v ; \vec x) ) & |
83 |
\end{array} |
84 |
\] |
85 |
so long as the expressions are well-formed. % (i.e.\ in number/sort of arguments). |
86 |
\item Safe composition. If $g, \vec h, \vec h'$ are in BC then so is $f$ defined by, |
87 |
\[ |
88 |
f (\vec u ; \vec x) \quad := \quad g ( \vec h(\vec u ; ) ; \vec h' (\vec u ; \vec x) ) |
89 |
\] |
90 |
so long as the expression is well-formed. |
91 |
\end{enumerate} |
92 |
\end{definition} |
93 |
%Note that the programs of this class can be defined by equational specifications in a natural way, and in the following we will thus silently identify a BC program with the corresponding equational specification. |
94 |
|
95 |
We will refer to the expressions or terms built up from the rules above as `$\bc$-programs', although we consider $\bc$ itself to be an algebra of functions. |
96 |
The main property of $\bc$ is: |
97 |
\begin{theorem}[\cite{BellantoniCook92}] |
98 |
$\bc =\fptime$. |
99 |
\end{theorem} |
100 |
|
101 |
%Actually this property remains true if one replaces the PRN scheme by the following more general simultaneous PRN scheme \cite{BellantoniThesis}: |
102 |
% |
103 |
%$(f^j)_{1\leq j\leq n}$ are defined by simultaneous PRN scheme from $(g^j)_{1\leq j\leq n}$, $(h^j_0, h^j_1)_{1\leq j\leq n}$ if for $1\leq j\leq n$ we have: |
104 |
%\[ |
105 |
%\begin{array}{rcl} |
106 |
%f^j(0, \vec v ; \vec x) & := & g^j(\vec v ; \vec x) \\ |
107 |
%f^j(\succ i u , \vec v ; \vec x ) & := & h^j_i ( u , \vec v ; \vec x , \vec{f} (u , \vec v ; \vec x) ) |
108 |
%\end{array} |
109 |
%\] |
110 |
%for $i = 0,1$, so long as the expressions are well-formed. |
111 |
|
112 |
%\anupam{simultaneous recursion?} |
113 |
|
114 |
%\anupam{also identity, hereditarily safe, expressions, etc.} |
115 |
|
116 |
%\anupam{we implicitly associate a BC program with its equational specification} |
117 |
|
118 |
Consider a well-formed expression $t$ built from function symbols and variables. We say that a variable $y$ occurs \textit{hereditarily safe} in $t$ if, for every subexpression $f(\vec{r}; \vec{s})$ of $t$, the terms in $\vec{r}$ do not contain $y$. |
119 |
For instance $y$ occurs hereditarily safe in $f(u;y,g(v;y))$, but not in $f(g(v;y);x)$. |
120 |
\begin{proposition} |
121 |
[Properties of $\bc$ programs] |
122 |
\label{prop:bc-properties} |
123 |
We have the following properties: |
124 |
\begin{enumerate} |
125 |
\item The identity function is in $\bc$. |
126 |
\item Let $t$ be a well-formed expression built from $\bc$ programs and variables, denote its free variables as $\{u_1,\dots, u_n,x_1,\dots, x_k\}$, and assume for each $1\leq i\leq k$, $x_i$ is hereditarily safe in $t$. Then the function $f(u_1,\dots, u_n; x_1,\dots, x_k):=t$ is in $\bc$. |
127 |
\item If $f$ is a $\bc$ program, then the function $g(\vec{u},v;\vec{x})$ defined as $f(\vec{u};v,\vec{x})$ |
128 |
is also a $\bc $ program. |
129 |
\end{enumerate} |
130 |
|
131 |
%\begin{proposition} |
132 |
%[Properties of BC programs] |
133 |
%\label{prop:bc-properties} |
134 |
%We have the following properties: |
135 |
%\begin{enumerate} |
136 |
%\item Hereditarily safe expressions over BC programs are BC definable. |
137 |
%\item Can pass safe input to normal input. |
138 |
%\end{enumerate} |
139 |
\end{proposition} |
140 |
|
141 |
%\nb{TODO: extend with $\mu$s.} |
142 |
|
143 |
%\anupam{Should add $+(;x,y)$ as a basic function (check satisfies polychecking lemma!), since otherwise not definable with safe input. Then define unary successor $\succ{} (;x)$ as $+(;x,\succ 1 0)$. } |
144 |
|
145 |
We denote $|x|=\ulcorner \log(x+1) \urcorner.$ |
146 |
\begin{example} |
147 |
[Some simple functions] |
148 |
\label{ex:simple-bc-fns} |
149 |
% \todo{Boolean predicates $\notfn, \andfn, \orfn, \equivfn$ .} |
150 |
% \todo{$\bit$} |
151 |
Observe that: |
152 |
\begin{itemize} |
153 |
\item The boolean predicates $\notfn (;x)$, $\andfn(;x,y)$, $\orfn(;x,y)$, $\equivfn(;x,y)$ can all be defined on safe arguments, simply by computing by case distinction using the conditional function. |
154 |
%\item $\bit(l;x)$ returns the $\mode l$th bit of $x$. |
155 |
\item We can define the function $\bit(l;x)$ which returns the $|l|$th least significant bit of $x$. For instance $\bit(11;1101)=0$. |
156 |
|
157 |
For that let us first define the function $\shorten(l;x)$ which returns the $|x|- |l|$ prefix of $x$, as follows: |
158 |
\begin{eqnarray*} |
159 |
\shorten(0;x) &=&x\\ |
160 |
\shorten(\succ{i}l;x) &=&p(;\shorten(l;x)) |
161 |
\end{eqnarray*} |
162 |
Then we define $\bit(l;x)$ as follows: |
163 |
$$\bit(l;x)=C(;\shorten(l;x),0,1).$$ |
164 |
\end{itemize} |
165 |
\end{example} |
166 |
|
167 |
|
168 |
%\nb{Remember polymax bounded checking lemma! Quite important. Also need to bear this in mind when adding functions.} |
169 |
|
170 |
\subsection{Bellantoni's characterisation of $\fphi{i}$ using predicative minimisation} |
171 |
|
172 |
Now, in order to characterize $\fph$ and its subclasses $\fphi{i}$ we consider Bellantoni's function algebra $\mubc$, extending $\bc$ by predicative minimisation: |
173 |
\begin{definition}[$\mubc$ and $\mubc^i$ programs] |
174 |
The algebra $\mubc$ is generated from $\bc$ by the following additional operation: |
175 |
|
176 |
\begin{enumerate} |
177 |
\setcounter{enumi}{7} |
178 |
\item Predicative minimisation. If $h$ is in $\mubc$, then so is $f$ defined by |
179 |
$$f(\vec u; \vec x):= \begin{cases} |
180 |
s_1 \mu y.(h(\vec u; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\ |
181 |
0 & \mbox{ otherwise,} |
182 |
\end{cases} |
183 |
$$ |
184 |
\end{enumerate} |
185 |
where $\mu y.(h(\vec u; \vec x , y)\mod 2 = 0)$ is the least $y$ such that the equality holds. |
186 |
%We will denote this function $f$ as $\mu y^{+1} . h(\vec u ; \vec x , y) =_2 0$. |
187 |
|
188 |
For each $i\geq 0$, $\mubc^i$ is the set of $\mubc$ functions obtained by at most $i$ applications of predicative minimisation.\footnote{This is the number of nestings of $\mu$ in a $\mubc$ program, written as a derivation tree or dag.} So $\mubc^0=\bc$ and $\mubc =\cup_i \mubc^i$. |
189 |
|
190 |
\end{definition} |
191 |
|
192 |
Bellantoni showed the following result: |
193 |
|
194 |
\begin{theorem}[\cite{BellantoniThesis, Bellantoni95}]\label{thm:mubc} |
195 |
$\mubc =\fph$. Furthermore, for $i\geq 1$, $\mubc^{i-1} = \fphi{i}$. |
196 |
\end{theorem} |
197 |
|
198 |
In what follows we will recall some of the intermediate results and state a slightly stronger result that directly follows from \cite{bellantoni1995fph}. |
199 |
% |
200 |
%\medskip |
201 |
%\noindent |
202 |
%\textbf{Some computational properties of $\mubc$ programs.} |
203 |
At the same time these results give us access to bounds for $\mubc$ functions that we use later on. |
204 |
|
205 |
\begin{definition} |
206 |
A function $f(\vec u; \vec x)$ is \textit{polymax bounded} if there exists a polynomial $q$ such that, |
207 |
for any $\vec u$ and $\vec x$ one has: |
208 |
|
209 |
%$\size{u}$ |
210 |
$$ \size{f(\vec u; \vec x)} \leq q(\size{u_1} , \dots , \size{u_k}) + \max_j \size{x_j}.$$ |
211 |
\end{definition} |
212 |
|
213 |
We define the function $\mode$ by $u\mode x:= u \mod 2^{\size{x}}$. Note that this means that as a binary string $u\mode x$ is the suffix of $u$ of length $\size{x}$. |
214 |
\begin{definition} |
215 |
A function $f(\vec u; \vec x)$ is a \textit{polynomial checking function} on $\vec u$ if there exists a polynomial $q$ |
216 |
such that, for any $\vec u$, $\vec x$, $y$ and $z$ such that $\size{y} \geq q(\size{\vec u})+ \size{z}$ we have: |
217 |
$$ f(\vec u; \vec x) \mode z = f(\vec u; \vec x \mode y)\mode z.$$ |
218 |
A polynomial $q$ satisfying this condition is called a \textit{threshold} for $f$. |
219 |
\end{definition} |
220 |
One then has: |
221 |
\begin{lemma}[Bounded minimisation, \cite{BellantoniThesis}] |
222 |
\label{lem:bounded-minimisation} |
223 |
If $f(\vec u; \vec x,y)$ is a polynomial checking function on $\vec u$ and $q$ is a threshold, then for any $\vec u$ and $\vec x$ we have: |
224 |
$$ (\exists y. f(\vec u; \vec x,y)\mbox{ mod } 2=0) \Rightarrow (\exists y. (\size{y}\leq q(\size{\vec{x}})+2) \mbox{ and } f(\vec u; \vec x,y) \mbox{ mod } 2=0) .$$ |
225 |
\end{lemma} |
226 |
|
227 |
Finally we can state an important lemma about $\mubc$. |
228 |
If $\Phi$ is a class of functions, we denote by $\mubc(\Phi)$ the class obtained as $\mubc$ but adding $\Phi$ to the set of initial functions. |
229 |
\begin{lemma}[Polychecking Lemma, \cite{BellantoniThesis}] |
230 |
\label{lem:polychecking} |
231 |
Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is a polymax bounded function polynomial checking function on $\vec u$. |
232 |
\end{lemma} |
233 |
|
234 |
In particular, we also have the following strengthening of Thm.~\ref{thm:mubc}, |
235 |
following from \cite{BellantoniThesis, Bellantoni95}. |
236 |
|
237 |
|
238 |
\begin{theorem} |
239 |
\label{thm:mubc-phi} |
240 |
If $\Phi$ is a class of polymax bounded polynomial checking functions, then $\mubci {i-1} (\Phi) = \fphi i$. |
241 |
\end{theorem} |
242 |
% |
243 |
\subsection{Some properties and extensions of $\bc$ and $\mubc$}\label{sect:somepropertiesofmubc} |
244 |
|
245 |
We will state some results here that we rely on in the later sections. |
246 |
|
247 |
Consider the addition function $+$ with two safe arguments, so denoted as $+(;x,y)$. It is clear that if $+(;x,y)=z$, then we have $|z| \leq \max(|x|,|y|)+1$, so $+$ is a polymax bounded function. Moreover for any $n$, the $n$th least significant bits of $z$ only depend on the $n$th least significant bits of $x$ and $y$, so $+(;x,y)$ is a polynomial checking function (on no normal argument), with threshold $q(x,y)=0$. |
248 |
|
249 |
Thus, we will freely add $+(;x,y)$ to the $\mubc $ framework, under Thm.~\ref{thm:mubc-phi}, and define unary successor $\succ{} (;x) \dfn +(;x, \succ 1 0)$. |
250 |
% In the following we will consider $\mubc(\Phi)$ with $\Phi$ containing the function $+(;x,y)$, but write it simply as $\mubc$. Note that addition could be defined in $\bc$ (hence in $\mubc$), but not with two safe arguments because the definition would use safe recursion. We will also use the unary successor $\succ{} (;x)$, which is defined thanks to addition as as $\succ{} (;x)=+(;x,\succ 1 0)$. |
251 |
% |
252 |
In the same way, although for more simple reasons, we may add the functions $\#$ and $|\cdot|$ that we introduce later in Sect.~\ref{sect:arithmetic} to $\mubc$ containing only normal arguments since they are polynomial-time computable. |
253 |
|
254 |
|
255 |
One important closure property we will need for $\mubc $ functions, namely to define `witness functions' later on, is the following: |
256 |
\begin{lemma} |
257 |
[Sharply bounded lemma] |
258 |
\label{lem:sharply-bounded-recursion} |
259 |
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
260 |
Then the characteristic functions of $\forall u \leq |v| . A(u,\vec u ; \vec x)$ and $\exists u \leq |v| . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$. |
261 |
\end{lemma} |
262 |
\begin{proof} |
263 |
For the $\forall$ case, we define the characteristic function $f(v , \vec u ; \vec x)$ by predicative recursion on $v$ as: |
264 |
\[ |
265 |
\begin{array}{rcl} |
266 |
f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\ |
267 |
f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (|\succ i v|, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) ) |
268 |
\end{array} |
269 |
\] |
270 |
The $\exists$ case is similar. |
271 |
\end{proof} |
272 |
|
273 |
Finally, we will briefly outline some basic functions for (de)coding sequences. The functions we introduce here will in fact be representable in the theory $\arith^1$ that we introduce in the next section, which, along with proofs of their basic properties, will be important for the completeness result in Sect.~\ref{sect:completeness}. |
274 |
|
275 |
We assume the existence of a simple pairing function in $\bc$ for elements of fixed size: $\pair{k,l}{x}{y}$ identifies the pair $(x \mode k , y \mode l )$. |
276 |
An appropriate such function would `interleave' $x$ and $y$, adding delimiters as necessary. |
277 |
We assume that $|\pair{k,l}{x}{y}| = k+O(l)$ and $\pair{k,l}{x}{y}$ satisfies the polychecking lemma. |
278 |
% |
279 |
We will simply write $\pair{l}{x}{y}$ for $\pair{l,l}{x}{y}$. |
280 |
|
281 |
\begin{lemma} |
282 |
[Coding sequences] |
283 |
\label{lem:sequence-creation} |
284 |
Given a function $f(u , \vec u ; \vec x)$ there is a $\bc(f)$ function $F(l, u , \vec u ; \vec x) |
285 |
% $ such that: |
286 |
% \[ |
287 |
% F(l,u,\vec u ; \vec x) |
288 |
% \quad = \quad |
289 |
= |
290 |
\langle \cdots \langle f(0, \vec u ; \vec x) \mode l , f(1, \vec u ; \vec x) \mode l \rangle , \cdots , f(|u|, \vec u ; \vec x) \mode l \rangle |
291 |
% \] |
292 |
$ |
293 |
\end{lemma} |
294 |
\begin{proof} |
295 |
We simply define $F$ by safe recursion from $f$: |
296 |
\[ |
297 |
\begin{array}{rcl} |
298 |
F(l,0, \vec u ; \vec x) & \dfn & \langle ; f(0) \mode l \rangle \\ |
299 |
F(l, \succ i u , \vec u ; \vec x ) & \dfn & \pair{p(u l) , l}{F(l, u , \vec u ; \vec x)}{f( |\succ i u| , \vec u ; \vec x )} |
300 |
\end{array} |
301 |
\] |
302 |
where $p(u l)$ is a sufficiently large polynomial. |
303 |
\end{proof} |
304 |
|
305 |
\begin{lemma} |
306 |
[Decoding sequences] |
307 |
We can define $\beta(l,i;x)$ as $(i\text{th element of x}) \mode l$. |
308 |
\end{lemma} |
309 |
\begin{proof}[Proof sketch] |
310 |
First define $\beta (j,i;x)$ as $|j|$th bit of $|i|$th element of $x$, of the form $\bit(p(i,j) ; x)$ for some quasipolynomial $p$,\footnote{A quasipolynomial is just a polynomial that may contain $\smsh$.} then use similar idea to the proof above, concatenating the bits of the $i$th element by a recursion on $j$. |
311 |
\end{proof} |
312 |
|
313 |
%Notice that $\beta (l,i;x)$ satisfies the polychecking lemma. |
314 |
|