Révision 254 CSL17/tech-report/arithmetic.tex

arithmetic.tex (revision 254)
42 42
\end{array}
43 43
\]
44 44
Notice that we have $\normal \subseteq \safe$.
45
A full list of our $\basic$ axioms can be found in Appendix \ref{appendix:arithmetic}.
46 45

  
46
Apart from these, the remaining $\basic$ axioms mimic those of Buss in \cite{Buss86book}:
47

  
48
\input{appendix-arithmetic}
49

  
47 50
%\begin{definition}
48 51
%	[Basic theory]
49 52
%	The theory $\basic$ consists of the axioms from Appendix \ref{appendix:arithmetic}.
......
160 163
\begin{figure}
161 164
	\[
162 165
	\small
163
	\hspace{-1.5em}
164
	\begin{array}{l}
166
	\hspace{-4em}
165 167
	\begin{array}{cccc}
166 168
	%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
167 169
	%& \vlinf{\id}{}{p \seqar p}{}
......
212 214
	%\noalign{\bigskip}
213 215
	% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
214 216
	\end{array}
215
	\end{array}
216 217
	\]
217 218
	\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus}
218 219
\end{figure}

Formats disponibles : Unified diff