Révision 254
CSL17/tech-report/soundness.tex (revision 254) | ||
---|---|---|
51 | 51 |
Given a $\Sigma^\safe_i$ formula $A$ and compatible sorting $(\vec u; \vec x)$ of its variables, there is a $\mubci{i}$ program $\charfn{\vec u ;\vec x}{A} (l, \vec u ; \vec x)$ computing the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$. |
52 | 52 |
\end{proposition} |
53 | 53 |
|
54 |
\begin{definition} |
|
55 |
[Length bounded characteristic functions] |
|
56 |
We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A$ and a compatible typing $(\vec u ; \vec x)$ of its varables, as follows. |
|
57 |
% If $A$ is a $\Pi_{i}$ formula then: |
|
58 |
\[ |
|
59 |
\begin{array}{rcl} |
|
60 |
\charfn{\vec u ; \vec x}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\ |
|
61 |
\smallskip |
|
62 |
% \charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\ |
|
63 |
% \smallskip |
|
64 |
\charfn{\vec u ; \vec x}{\neg A} (l, \vec u ; \vec x) & \dfn & \notfn (;\charfn{\vec u ; \vec x}{A}(l , \vec u ; \vec x)) \\ |
|
65 |
\smallskip |
|
66 |
\charfn{\vec u ; \vec x}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \orfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) \\ |
|
67 |
\smallskip |
|
68 |
\charfn{\vec u ; \vec x}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \andfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) |
|
69 |
% \end{array} |
|
70 |
% \quad |
|
71 |
% \begin{array}{rcl} |
|
72 |
\\ \smallskip |
|
73 |
\charfn{\vec u ; \vec x}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases} |
|
74 |
1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\ |
|
75 |
0 & \text{otherwise} |
|
76 |
\end{cases} \\ |
|
77 |
\smallskip |
|
78 |
\charfn{\vec u ; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & |
|
79 |
\begin{cases} |
|
80 |
0 & \exists x^\sigma. \charfn{\vec u ; \vec x}{ A(x)} (l, \vec u; \vec x , x) = 0 \\ |
|
81 |
1 & \text{otherwise} |
|
82 |
\end{cases} |
|
83 |
\end{array} |
|
84 |
\] |
|
85 |
\end{definition} |
|
54 | 86 |
|
87 |
|
|
55 | 88 |
We will use the programs $\charfn{}{}$ in the witness functions we define below. |
56 | 89 |
Let us write $\charfn{}{i}$ to denote the class of functions $\charfn{}{A}$ for $A \in \Sigma^\safe_{i}$. |
57 | 90 |
For the notion of bounding polynomial below we are a little informal with bounds, using `big-oh' notation, since it will suffice just to be `sufficiently large'. |
... | ... | |
154 | 187 |
|
155 | 188 |
|
156 | 189 |
|
190 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
|
157 | 191 |
|
192 |
\begin{proof} |
|
193 |
Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$. |
|
194 |
We define the function $f$ inductively, by considering the various final rules of $\pi$. |
|
195 |
|
|
196 |
|
|
197 |
\paragraph*{Negation} |
|
198 |
Can assume only on atomic formulae, so no effect. |
|
199 |
|
|
200 |
\paragraph*{Logical rules} |
|
201 |
Pairing, depairing. Need length-boundedness. |
|
202 |
|
|
203 |
If we have a left conjunction step: |
|
204 |
\[ |
|
205 |
\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta} |
|
206 |
\] |
|
207 |
By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that, |
|
208 |
\[ |
|
209 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w) |
|
210 |
\quad \implies \quad |
|
211 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) )) |
|
212 |
\] |
|
213 |
for some polynomial $p$. |
|
214 |
% |
|
215 |
We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$. |
|
216 |
|
|
217 |
|
|
218 |
Right disjunction step: |
|
219 |
\[ |
|
220 |
\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B } |
|
221 |
\] |
|
222 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. |
|
223 |
Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that: |
|
224 |
\[ |
|
225 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w) |
|
226 |
\quad \implies \quad |
|
227 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) )) |
|
228 |
\] |
|
229 |
for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH). |
|
230 |
We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
|
231 |
\paragraph*{Quantifiers} |
|
232 |
\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
|
233 |
|
|
234 |
|
|
235 |
|
|
236 |
Sharply bounded quantifiers are generalised versions of logical rules. |
|
237 |
\[ |
|
238 |
\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) } |
|
239 |
\] |
|
240 |
By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that: |
|
241 |
\[ |
|
242 |
\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w ) |
|
243 |
\quad \implies \quad |
|
244 |
\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) ) |
|
245 |
\] |
|
246 |
with $|f|\leq q(|l|)$. |
|
247 |
|
|
248 |
By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that.... |
|
249 |
|
|
250 |
We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w )$. |
|
251 |
|
|
252 |
|
|
253 |
Right existential: |
|
254 |
\[ |
|
255 |
\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)} |
|
256 |
\] |
|
257 |
Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form. |
|
258 |
|
|
259 |
|
|
260 |
\paragraph*{Contraction} |
|
261 |
Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
|
262 |
|
|
263 |
\[ |
|
264 |
\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A} |
|
265 |
\] |
|
266 |
|
|
267 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss. |
|
268 |
We define: |
|
269 |
\[ |
|
270 |
f^\pi_A ( \vec u ; \vec x , \vec w ) |
|
271 |
\quad \dfn \quad |
|
272 |
\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w) ) |
|
273 |
\] |
|
274 |
|
|
275 |
|
|
276 |
\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. } |
|
277 |
\paragraph*{Induction} |
|
278 |
Corresponds to safe recursion on notation. |
|
279 |
Suppose final step is (wlog): |
|
280 |
\[ |
|
281 |
\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma, A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} } |
|
282 |
\] |
|
283 |
\anupam{need to say in normal form part that can assume induction of this form} |
|
284 |
For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!} |
|
285 |
|
|
286 |
Now, by the inductive hypothesis, we have functions $h_i$ such that: |
|
287 |
\[ |
|
288 |
\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x , \vec w) |
|
289 |
\quad \implies \quad |
|
290 |
\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x , h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) ) |
|
291 |
\] |
|
292 |
First let us define $ f$ as follows: |
|
293 |
\[ |
|
294 |
\begin{array}{rcl} |
|
295 |
f (0 , \vec u ; \vec x, \vec w, w ) & \dfn & w\\ |
|
296 |
f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & |
|
297 |
h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w )) |
|
298 |
\end{array} |
|
299 |
\] |
|
300 |
where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$. |
|
301 |
\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.} |
|
302 |
|
|
303 |
Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$. |
|
304 |
|
|
305 |
\paragraph*{Cut} |
|
306 |
If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position. |
|
307 |
Otherwise it is a `raisecut': |
|
308 |
\[ |
|
309 |
\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe . A(x) }{ \normal (u) , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta } |
|
310 |
\] |
|
311 |
In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as: |
|
312 |
\[ |
|
313 |
\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w ) |
|
314 |
\quad \dfn \quad |
|
315 |
\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w ) |
|
316 |
\] |
|
317 |
\end{proof} |
|
318 |
|
|
319 |
|
|
320 |
|
|
321 |
|
|
322 |
|
|
323 |
|
|
158 | 324 |
Now we can prove the soundness result: |
159 | 325 |
|
160 | 326 |
\begin{proof} |
CSL17/tech-report/main.tex (revision 254) | ||
---|---|---|
1 |
\documentclass[a4paper]{amsart}
|
|
1 |
\documentclass[a4paper]{article}
|
|
2 | 2 |
|
3 | 3 |
\usepackage{amsmath} |
4 | 4 |
\usepackage{amsthm} |
... | ... | |
14 | 14 |
\usepackage[lutzsyntax]{virginialake} |
15 | 15 |
\input{ph-macros} |
16 | 16 |
|
17 |
\begin{document} |
|
17 | 18 |
|
18 |
\title[Polynomial hierarchy in an unbounded arithmetic]{An implicit characterisation of the polynomial hierarchy in an unbounded arithmetic}
|
|
19 |
\title{An implicit characterisation of the polynomial hierarchy in an unbounded arithmetic} |
|
19 | 20 |
|
20 | 21 |
\author{Patrick Baillot} |
21 | 22 |
\author{Anupam Das} |
22 | 23 |
|
23 | 24 |
|
24 |
\begin{document} |
|
25 | 25 |
|
26 |
|
|
26 | 27 |
\maketitle |
27 | 28 |
|
28 | 29 |
\begin{abstract} |
... | ... | |
64 | 65 |
|
65 | 66 |
\newpage |
66 | 67 |
\appendix |
67 |
\input{appendix-arithmetic} |
|
68 |
|
|
68 | 69 |
%%\input{pv-theories} |
69 |
%\input{appendix-sequent-calculus}
|
|
70 |
%\input{appendix-soundness} |
|
70 |
\input{appendix-sequent-calculus} |
|
71 |
|
|
71 | 72 |
\input{appendix-completeness} |
72 | 73 |
|
73 | 74 |
\end{document} |
CSL17/tech-report/appendix-soundness.tex (revision 254) | ||
---|---|---|
1 |
\section{Proof of soundness} |
|
1 |
%\section{Proof of soundness}
|
|
2 | 2 |
|
3 |
\begin{definition} |
|
4 |
[Length bounded characteristic functions] |
|
5 |
We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A$ and a compatible typing $(\vec u ; \vec x)$ of its varables, as follows. |
|
6 |
% If $A$ is a $\Pi_{i}$ formula then: |
|
7 |
\[ |
|
8 |
\begin{array}{rcl} |
|
9 |
\charfn{\vec u ; \vec x}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\ |
|
10 |
\smallskip |
|
11 |
% \charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\ |
|
12 |
% \smallskip |
|
13 |
\charfn{\vec u ; \vec x}{\neg A} (l, \vec u ; \vec x) & \dfn & \notfn (;\charfn{\vec u ; \vec x}{A}(l , \vec u ; \vec x)) \\ |
|
14 |
\smallskip |
|
15 |
\charfn{\vec u ; \vec x}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \orfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) \\ |
|
16 |
\smallskip |
|
17 |
\charfn{\vec u ; \vec x}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \andfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) |
|
18 |
% \end{array} |
|
19 |
% \quad |
|
20 |
% \begin{array}{rcl} |
|
21 |
\\ \smallskip |
|
22 |
\charfn{\vec u ; \vec x}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases} |
|
23 |
1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\ |
|
24 |
0 & \text{otherwise} |
|
25 |
\end{cases} \\ |
|
26 |
\smallskip |
|
27 |
\charfn{\vec u ; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & |
|
28 |
\begin{cases} |
|
29 |
0 & \exists x^\sigma. \charfn{\vec u ; \vec x}{ A(x)} (l, \vec u; \vec x , x) = 0 \\ |
|
30 |
1 & \text{otherwise} |
|
31 |
\end{cases} |
|
32 |
\end{array} |
|
33 |
\] |
|
34 |
\end{definition} |
|
35 |
|
|
36 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
|
37 |
|
|
38 |
\begin{proof} |
|
39 |
Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$. |
|
40 |
We define the function $f$ inductively, by considering the various final rules of $\pi$. |
|
41 |
|
|
42 |
|
|
43 |
\paragraph*{Negation} |
|
44 |
Can assume only on atomic formulae, so no effect. |
|
45 |
|
|
46 |
\paragraph*{Logical rules} |
|
47 |
Pairing, depairing. Need length-boundedness. |
|
48 |
|
|
49 |
If we have a left conjunction step: |
|
50 |
\[ |
|
51 |
\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta} |
|
52 |
\] |
|
53 |
By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that, |
|
54 |
\[ |
|
55 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w) |
|
56 |
\quad \implies \quad |
|
57 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) )) |
|
58 |
\] |
|
59 |
for some polynomial $p$. |
|
60 |
% |
|
61 |
We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$. |
|
62 |
|
|
63 |
|
|
64 |
Right disjunction step: |
|
65 |
\[ |
|
66 |
\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B } |
|
67 |
\] |
|
68 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. |
|
69 |
Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that: |
|
70 |
\[ |
|
71 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w) |
|
72 |
\quad \implies \quad |
|
73 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) )) |
|
74 |
\] |
|
75 |
for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH). |
|
76 |
We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
|
77 |
\paragraph*{Quantifiers} |
|
78 |
\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
|
79 |
|
|
80 |
|
|
81 |
|
|
82 |
Sharply bounded quantifiers are generalised versions of logical rules. |
|
83 |
\[ |
|
84 |
\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) } |
|
85 |
\] |
|
86 |
By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that: |
|
87 |
\[ |
|
88 |
\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w ) |
|
89 |
\quad \implies \quad |
|
90 |
\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) ) |
|
91 |
\] |
|
92 |
with $|f|\leq q(|l|)$. |
|
93 |
|
|
94 |
By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that.... |
|
95 |
|
|
96 |
We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w )$. |
|
97 |
|
|
98 |
|
|
99 |
Right existential: |
|
100 |
\[ |
|
101 |
\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)} |
|
102 |
\] |
|
103 |
Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form. |
|
104 |
|
|
105 |
|
|
106 |
\paragraph*{Contraction} |
|
107 |
Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
|
108 |
|
|
109 |
\[ |
|
110 |
\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A} |
|
111 |
\] |
|
112 |
|
|
113 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss. |
|
114 |
We define: |
|
115 |
\[ |
|
116 |
f^\pi_A ( \vec u ; \vec x , \vec w ) |
|
117 |
\quad \dfn \quad |
|
118 |
\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w) ) |
|
119 |
\] |
|
120 |
|
|
121 |
|
|
122 |
\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. } |
|
123 |
\paragraph*{Induction} |
|
124 |
Corresponds to safe recursion on notation. |
|
125 |
Suppose final step is (wlog): |
|
126 |
\[ |
|
127 |
\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma, A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} } |
|
128 |
\] |
|
129 |
\anupam{need to say in normal form part that can assume induction of this form} |
|
130 |
For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!} |
|
131 |
|
|
132 |
Now, by the inductive hypothesis, we have functions $h_i$ such that: |
|
133 |
\[ |
|
134 |
\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x , \vec w) |
|
135 |
\quad \implies \quad |
|
136 |
\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x , h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) ) |
|
137 |
\] |
|
138 |
First let us define $ f$ as follows: |
|
139 |
\[ |
|
140 |
\begin{array}{rcl} |
|
141 |
f (0 , \vec u ; \vec x, \vec w, w ) & \dfn & w\\ |
|
142 |
f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & |
|
143 |
h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w )) |
|
144 |
\end{array} |
|
145 |
\] |
|
146 |
where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$. |
|
147 |
\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.} |
|
148 |
|
|
149 |
Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$. |
|
150 |
|
|
151 |
\paragraph*{Cut} |
|
152 |
If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position. |
|
153 |
Otherwise it is a `raisecut': |
|
154 |
\[ |
|
155 |
\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe . A(x) }{ \normal (u) , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta } |
|
156 |
\] |
|
157 |
In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as: |
|
158 |
\[ |
|
159 |
\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w ) |
|
160 |
\quad \dfn \quad |
|
161 |
\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w ) |
|
162 |
\] |
|
163 |
\end{proof} |
|
164 |
|
CSL17/tech-report/arithmetic.tex (revision 254) | ||
---|---|---|
42 | 42 |
\end{array} |
43 | 43 |
\] |
44 | 44 |
Notice that we have $\normal \subseteq \safe$. |
45 |
A full list of our $\basic$ axioms can be found in Appendix \ref{appendix:arithmetic}. |
|
46 | 45 |
|
46 |
Apart from these, the remaining $\basic$ axioms mimic those of Buss in \cite{Buss86book}: |
|
47 |
|
|
48 |
\input{appendix-arithmetic} |
|
49 |
|
|
47 | 50 |
%\begin{definition} |
48 | 51 |
% [Basic theory] |
49 | 52 |
% The theory $\basic$ consists of the axioms from Appendix \ref{appendix:arithmetic}. |
... | ... | |
160 | 163 |
\begin{figure} |
161 | 164 |
\[ |
162 | 165 |
\small |
163 |
\hspace{-1.5em} |
|
164 |
\begin{array}{l} |
|
166 |
\hspace{-4em} |
|
165 | 167 |
\begin{array}{cccc} |
166 | 168 |
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
167 | 169 |
%& \vlinf{\id}{}{p \seqar p}{} |
... | ... | |
212 | 214 |
%\noalign{\bigskip} |
213 | 215 |
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&& |
214 | 216 |
\end{array} |
215 |
\end{array} |
|
216 | 217 |
\] |
217 | 218 |
\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus} |
218 | 219 |
\end{figure} |
CSL17/tech-report/intro.tex (revision 254) | ||
---|---|---|
55 | 55 |
%Then we describe an encoding of sequences which will be instrumental in the proof of our result. |
56 | 56 |
We present our arithmetic theories $\arith^i$ in Sect.~\ref{sect:arithmetic} and give our soundness result, that the provably total functions of $\arith^i$ are in $\fph_i$, in Sect.~\ref{sect:soundness}. Finally, we sketch the completeness result, that all $\fph_i$ functions have a representation provably total in $\arith^i$, in Sect.~\ref{sect:completeness}, and present conclusions in Sect.~\ref{sect:conclusion}. |
57 | 57 |
|
58 |
We are able to include only brief accounts of our technical results in this paper due to space constraints, in particular for our soundness and completeness results, Thms.~\ref{sect:soundness} and \ref{thm:completeness} respectively. |
|
59 |
More detailed proofs can be found in the technical report \cite{BaiDas17:fph-techreport}. |
|
58 |
% We are able to include only brief accounts of our technical results in this paper due to space constraints, in particular for our soundness and completeness results, Thms.~\ref{sect:soundness} and \ref{thm:completeness} respectively.
|
|
59 |
% More detailed proofs can be found in the technical report \cite{BaiDas17:fph-techreport}.
|
|
60 | 60 |
|
61 | 61 |
|
62 | 62 |
% \patrick{ |
CSL17/tech-report/appendix-arithmetic.tex (revision 254) | ||
---|---|---|
1 |
\section{Appendix: remaining axioms of $\basic$}\label{appendix:arithmetic} |
|
2 |
|
|
3 |
We give here the list of remaining axioms of $\basic$, which are directly inspired by the $\basic$ theory of Buss's bounded arithmetic \cite{Buss86book}: |
|
4 |
%$\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$, |
|
5 |
|
|
6 |
|
|
1 |
%\section{Appendix: remaining axioms of $\basic$}\label{appendix:arithmetic}
|
|
2 |
% |
|
3 |
%We give here the list of remaining axioms of $\basic$, which are directly inspired by the $\basic$ theory of Buss's bounded arithmetic \cite{Buss86book}:
|
|
4 |
%%$\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$,
|
|
5 |
% |
|
6 |
% |
|
7 | 7 |
$$ |
8 | 8 |
%\begin{equation} |
9 | 9 |
\begin{array}{l} |
Formats disponibles : Unified diff