Révision 254

CSL17/tech-report/soundness.tex (revision 254)
51 51
Given a $\Sigma^\safe_i$ formula $A$ and compatible sorting $(\vec u; \vec x)$ of its variables, there is a $\mubci{i}$ program $\charfn{\vec u ;\vec x}{A} (l, \vec u ; \vec x)$ computing the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$.
52 52
\end{proposition}
53 53

  
54
\begin{definition}
55
	[Length bounded characteristic functions]
56
	We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A$ and a compatible typing $(\vec u ; \vec x)$ of its varables, as follows.
57
	%	If $A$ is a $\Pi_{i}$ formula then:
58
	\[
59
	\begin{array}{rcl}
60
	\charfn{\vec u ; \vec x}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\
61
	\smallskip
62
	%	\charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\
63
	%	\smallskip
64
	\charfn{\vec u ; \vec x}{\neg A} (l, \vec u ; \vec x) & \dfn & \notfn (;\charfn{\vec u ; \vec x}{A}(l , \vec u ; \vec x)) \\
65
	\smallskip
66
	\charfn{\vec u ; \vec x}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \orfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) \\
67
	\smallskip
68
	\charfn{\vec u ; \vec x}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \andfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) )
69
	%	\end{array}
70
	%	\quad
71
	%	\begin{array}{rcl}
72
	\\	\smallskip
73
	\charfn{\vec u ; \vec x}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases}
74
	1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\
75
	0 & \text{otherwise} 
76
	\end{cases} \\
77
	\smallskip
78
	\charfn{\vec u ; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & 
79
	\begin{cases}
80
	0 & \exists x^\sigma. \charfn{\vec u ; \vec x}{ A(x)} (l, \vec u; \vec x , x) = 0 \\
81
	1 & \text{otherwise}
82
	\end{cases}
83
	\end{array}
84
	\]
85
\end{definition}
54 86

  
87

  
55 88
We will use the programs $\charfn{}{}$ in the witness functions we define below.
56 89
Let us write $\charfn{}{i}$ to denote the class of functions $\charfn{}{A}$ for $A \in \Sigma^\safe_{i}$.
57 90
For the notion of bounding polynomial below we are a little informal with bounds, using `big-oh' notation, since it will suffice just to be `sufficiently large'.
......
154 187

  
155 188

  
156 189

  
190
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context.
157 191

  
192
\begin{proof}
193
	Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$.
194
	We define the function $f$ inductively, by considering the various final rules of $\pi$.
195
	
196
	
197
	\paragraph*{Negation}
198
	Can assume only on atomic formulae, so no effect.	
199
	
200
	\paragraph*{Logical rules}
201
	Pairing, depairing. Need length-boundedness.
202
	
203
	If we have a left conjunction step:
204
	\[
205
	\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta}
206
	\]
207
	By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that,
208
	\[
209
	\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w)
210
	\quad \implies \quad
211
	\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) ))
212
	\]
213
	for some polynomial $p$.
214
	%
215
	We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$.
216
	
217
	
218
	Right disjunction step:
219
	\[
220
	\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B }
221
	\]
222
	$\vec f^\pi_\Delta$ remains the same as that of premiss.
223
	Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that:
224
	\[
225
	\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w)
226
	\quad \implies \quad
227
	\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) ))		
228
	\]
229
	for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH).
230
	We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$.
231
	\paragraph*{Quantifiers}
232
	\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.}
233
	
234
	
235
	
236
	Sharply bounded quantifiers are generalised versions of logical rules.
237
	\[
238
	\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar  \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar  \Delta, A(u)  }
239
	\]
240
	By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that:
241
	\[
242
	\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w )
243
	\quad \implies \quad
244
	\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) )
245
	\]
246
	with $|f|\leq q(|l|)$.
247
	
248
	By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that....
249
	
250
	We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w  )$.
251
	
252
	
253
	Right existential:
254
	\[
255
	\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)}
256
	\]
257
	Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form.
258
	
259
	
260
	\paragraph*{Contraction}
261
	Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula.
262
	
263
	\[
264
	\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A}
265
	\]
266
	
267
	$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss.
268
	We define:
269
	\[
270
	f^\pi_A ( \vec u ; \vec x , \vec w  )
271
	\quad \dfn \quad
272
	\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w)  )
273
	\]
274
	
275
	
276
	\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. }
277
	\paragraph*{Induction}
278
	Corresponds to safe recursion on notation.
279
	Suppose final step is (wlog):
280
	\[
281
	\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma,  A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
282
	\]
283
	\anupam{need to say in normal form part that can assume induction of this form}
284
	For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
285
	
286
	Now, by the inductive hypothesis, we have functions $h_i$ such that:
287
	\[
288
	\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x ,  \vec w)
289
	\quad \implies \quad
290
	\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x ,  h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) )
291
	\]
292
	First let us define $ f$ as follows:
293
	\[
294
	\begin{array}{rcl}
295
	f (0 , \vec u ; \vec x, \vec w,  w ) & \dfn &  w\\
296
	f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & 
297
	h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w ))
298
	\end{array}
299
	\]
300
	where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$.
301
	\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.}
302
	
303
	Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$.
304
	
305
	\paragraph*{Cut}
306
	If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position.
307
	Otherwise it is a `raisecut':
308
	\[
309
	\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe  . A(x) }{ \normal (u)  , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta }
310
	\]
311
	In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as:
312
	\[
313
	\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w )
314
	\quad \dfn \quad
315
	\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w )
316
	\]
317
\end{proof}
318

  
319

  
320

  
321

  
322

  
323

  
158 324
Now we can prove the soundness result:
159 325
	
160 326
	\begin{proof}
CSL17/tech-report/main.tex (revision 254)
1
\documentclass[a4paper]{amsart}
1
\documentclass[a4paper]{article}
2 2

  
3 3
\usepackage{amsmath}
4 4
\usepackage{amsthm}
......
14 14
\usepackage[lutzsyntax]{virginialake}
15 15
\input{ph-macros}
16 16

  
17
\begin{document}
17 18

  
18
\title[Polynomial hierarchy in an unbounded arithmetic]{An implicit characterisation of the polynomial hierarchy in an unbounded arithmetic}
19
\title{An implicit characterisation of the polynomial hierarchy in an unbounded arithmetic}
19 20

  
20 21
\author{Patrick Baillot}
21 22
\author{Anupam Das}
22 23

  
23 24

  
24
\begin{document}
25 25

  
26

  
26 27
\maketitle
27 28

  
28 29
\begin{abstract}
......
64 65

  
65 66
\newpage
66 67
\appendix
67
\input{appendix-arithmetic}
68

  
68 69
%%\input{pv-theories}	
69
%\input{appendix-sequent-calculus}
70
%\input{appendix-soundness}
70
\input{appendix-sequent-calculus}
71

  
71 72
\input{appendix-completeness}
72 73

  
73 74
\end{document}
CSL17/tech-report/appendix-soundness.tex (revision 254)
1
\section{Proof of soundness}
1
%\section{Proof of soundness}
2 2

  
3
\begin{definition}
4
	[Length bounded characteristic functions]
5
	We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A$ and a compatible typing $(\vec u ; \vec x)$ of its varables, as follows.
6
	%	If $A$ is a $\Pi_{i}$ formula then:
7
	\[
8
	\begin{array}{rcl}
9
	\charfn{\vec u ; \vec x}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\
10
	\smallskip
11
	%	\charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\
12
	%	\smallskip
13
	\charfn{\vec u ; \vec x}{\neg A} (l, \vec u ; \vec x) & \dfn & \notfn (;\charfn{\vec u ; \vec x}{A}(l , \vec u ; \vec x)) \\
14
	\smallskip
15
	\charfn{\vec u ; \vec x}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \orfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) \\
16
	\smallskip
17
	\charfn{\vec u ; \vec x}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \andfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) )
18
	%	\end{array}
19
	%	\quad
20
	%	\begin{array}{rcl}
21
	\\	\smallskip
22
	\charfn{\vec u ; \vec x}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases}
23
	1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\
24
	0 & \text{otherwise} 
25
	\end{cases} \\
26
	\smallskip
27
	\charfn{\vec u ; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & 
28
	\begin{cases}
29
	0 & \exists x^\sigma. \charfn{\vec u ; \vec x}{ A(x)} (l, \vec u; \vec x , x) = 0 \\
30
	1 & \text{otherwise}
31
	\end{cases}
32
	\end{array}
33
	\]
34
\end{definition}
35

  
36
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context.
37

  
38
\begin{proof}
39
	Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$.
40
	We define the function $f$ inductively, by considering the various final rules of $\pi$.
41
	
42
	
43
	\paragraph*{Negation}
44
	Can assume only on atomic formulae, so no effect.	
45
	
46
	\paragraph*{Logical rules}
47
	Pairing, depairing. Need length-boundedness.
48
	
49
	If we have a left conjunction step:
50
	\[
51
	\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta}
52
	\]
53
	By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that,
54
	\[
55
	\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w)
56
	\quad \implies \quad
57
	\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) ))
58
	\]
59
	for some polynomial $p$.
60
	%
61
	We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$.
62
	
63
	
64
	Right disjunction step:
65
	\[
66
	\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B }
67
	\]
68
	$\vec f^\pi_\Delta$ remains the same as that of premiss.
69
	Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that:
70
	\[
71
	\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w)
72
	\quad \implies \quad
73
	\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) ))		
74
	\]
75
	for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH).
76
	We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$.
77
	\paragraph*{Quantifiers}
78
	\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.}
79
	
80
	
81
	
82
	Sharply bounded quantifiers are generalised versions of logical rules.
83
	\[
84
	\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar  \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar  \Delta, A(u)  }
85
	\]
86
	By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that:
87
	\[
88
	\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w )
89
	\quad \implies \quad
90
	\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) )
91
	\]
92
	with $|f|\leq q(|l|)$.
93
	
94
	By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that....
95
	
96
	We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w  )$.
97
	
98
	
99
	Right existential:
100
	\[
101
	\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)}
102
	\]
103
	Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form.
104
	
105
	
106
	\paragraph*{Contraction}
107
	Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula.
108
	
109
	\[
110
	\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A}
111
	\]
112
	
113
	$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss.
114
	We define:
115
	\[
116
	f^\pi_A ( \vec u ; \vec x , \vec w  )
117
	\quad \dfn \quad
118
	\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w)  )
119
	\]
120
	
121
	
122
	\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. }
123
	\paragraph*{Induction}
124
	Corresponds to safe recursion on notation.
125
	Suppose final step is (wlog):
126
	\[
127
	\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma,  A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
128
	\]
129
	\anupam{need to say in normal form part that can assume induction of this form}
130
	For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
131
	
132
	Now, by the inductive hypothesis, we have functions $h_i$ such that:
133
	\[
134
	\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x ,  \vec w)
135
	\quad \implies \quad
136
	\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x ,  h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) )
137
	\]
138
	First let us define $ f$ as follows:
139
	\[
140
	\begin{array}{rcl}
141
	f (0 , \vec u ; \vec x, \vec w,  w ) & \dfn &  w\\
142
	f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & 
143
	h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w ))
144
	\end{array}
145
	\]
146
	where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$.
147
	\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.}
148
	
149
	Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$.
150
	
151
	\paragraph*{Cut}
152
	If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position.
153
	Otherwise it is a `raisecut':
154
	\[
155
	\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe  . A(x) }{ \normal (u)  , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta }
156
	\]
157
	In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as:
158
	\[
159
	\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w )
160
	\quad \dfn \quad
161
	\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w )
162
	\]
163
	\end{proof}
164
	
CSL17/tech-report/arithmetic.tex (revision 254)
42 42
\end{array}
43 43
\]
44 44
Notice that we have $\normal \subseteq \safe$.
45
A full list of our $\basic$ axioms can be found in Appendix \ref{appendix:arithmetic}.
46 45

  
46
Apart from these, the remaining $\basic$ axioms mimic those of Buss in \cite{Buss86book}:
47

  
48
\input{appendix-arithmetic}
49

  
47 50
%\begin{definition}
48 51
%	[Basic theory]
49 52
%	The theory $\basic$ consists of the axioms from Appendix \ref{appendix:arithmetic}.
......
160 163
\begin{figure}
161 164
	\[
162 165
	\small
163
	\hspace{-1.5em}
164
	\begin{array}{l}
166
	\hspace{-4em}
165 167
	\begin{array}{cccc}
166 168
	%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
167 169
	%& \vlinf{\id}{}{p \seqar p}{}
......
212 214
	%\noalign{\bigskip}
213 215
	% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
214 216
	\end{array}
215
	\end{array}
216 217
	\]
217 218
	\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus}
218 219
\end{figure}
CSL17/tech-report/intro.tex (revision 254)
55 55
  %Then we describe an encoding of sequences which will be instrumental in the proof of our result. 
56 56
  We present our arithmetic theories $\arith^i$ in Sect.~\ref{sect:arithmetic} and give our soundness result, that the provably total functions of $\arith^i$ are in $\fph_i$, in Sect.~\ref{sect:soundness}. Finally, we sketch the completeness result, that all $\fph_i$ functions have a representation provably total in $\arith^i$, in Sect.~\ref{sect:completeness}, and present conclusions in Sect.~\ref{sect:conclusion}.
57 57
  
58
  We are able to include only brief accounts of our technical results in this paper due to space constraints, in particular for our soundness and completeness results, Thms.~\ref{sect:soundness} and \ref{thm:completeness} respectively. 
59
  More detailed proofs can be found in the technical report \cite{BaiDas17:fph-techreport}.
58
%  We are able to include only brief accounts of our technical results in this paper due to space constraints, in particular for our soundness and completeness results, Thms.~\ref{sect:soundness} and \ref{thm:completeness} respectively. 
59
%  More detailed proofs can be found in the technical report \cite{BaiDas17:fph-techreport}.
60 60
  
61 61
  
62 62
%  \patrick{
CSL17/tech-report/appendix-arithmetic.tex (revision 254)
1
\section{Appendix: remaining axioms of $\basic$}\label{appendix:arithmetic}
2

  
3
We give here the  list of remaining  axioms of $\basic$, which are directly inspired by the $\basic$ theory of Buss's bounded arithmetic \cite{Buss86book}:
4
%$\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$,
5
 
6
 
1
%\section{Appendix: remaining axioms of $\basic$}\label{appendix:arithmetic}
2
%
3
%We give here the  list of remaining  axioms of $\basic$, which are directly inspired by the $\basic$ theory of Buss's bounded arithmetic \cite{Buss86book}:
4
%%$\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$,
5
% 
6
% 
7 7
$$
8 8
%\begin{equation}
9 9
\begin{array}{l}

Formats disponibles : Unified diff