root / CSL17 / appendix-arithmetic.tex @ 254
Historique | Voir | Annoter | Télécharger (3,52 ko)
1 | 230 | adas | \section{Appendix: remaining axioms of $\basic$}\label{appendix:arithmetic} |
---|---|---|---|
2 | 187 | pbaillot | |
3 | 187 | pbaillot | We give here the list of remaining axioms of $\basic$, which are directly inspired by the $\basic$ theory of Buss's bounded arithmetic \cite{Buss86book}: |
4 | 187 | pbaillot | %$\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$, |
5 | 187 | pbaillot | |
6 | 220 | adas | |
7 | 187 | pbaillot | $$ |
8 | 187 | pbaillot | %\begin{equation} |
9 | 187 | pbaillot | \begin{array}{l} |
10 | 230 | adas | \forall x^{\safe}, y^{\safe}. (y\leq x\cimp y \leq \succ{} x) \\ |
11 | 187 | pbaillot | \forall x^{\safe}. x \neq \succ{} x\\ |
12 | 187 | pbaillot | \forall x^{\safe}.0 \leq x\\ |
13 | 230 | adas | \forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) \\ |
14 | 230 | adas | \forall x^{\safe}. (x\neq 0 \cimp \succ{0}x \neq 0)\\ |
15 | 230 | adas | \forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)\\ |
16 | 230 | adas | \forall x^{\safe}, y^{\safe}. ((x\leq y \cand y\leq x )\cimp x=y)\\ |
17 | 230 | adas | \forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)\\ |
18 | 187 | pbaillot | |0|=0\\ |
19 | 230 | adas | \forall x^{\safe}, y^{\safe}.( x\neq 0 \cimp (|\succ{0}x|=\succ{}( |x|) \cand |\succ{1}x|= \succ{}(|x|))) \\ |
20 | 187 | pbaillot | |\succ{}0|=\succ{} 0\\ |
21 | 230 | adas | \forall x^{\safe}, y^{\safe}. (x\leq y \cimp |x|\leq |y|)\\ |
22 | 230 | adas | \forall x^{\normal}, y^{\normal}. |x\smsh y|=\succ{}( |x|\cdot |y|)\\ |
23 | 187 | pbaillot | \forall y^{\normal}. 0 \smsh y=\succ{} 0\\ |
24 | 230 | adas | \forall x^{\normal}. (x\neq 0 \cimp (1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)))\\ |
25 | 187 | pbaillot | \forall x^{\normal}, y^{\normal}. x \smsh y = y \smsh x\\ |
26 | 230 | adas | \forall x^{\normal}, y^{\normal}, z^{\normal}. ( |x|= |y| \cimp x\smsh z = y\smsh z)\\ |
27 | 230 | adas | \forall x^{\normal}, u^{\normal}, v^{\normal}, y^{\normal}. (|x|= |u|+ |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y))\\ |
28 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}. x\leq x+y\\ |
29 | 230 | adas | \forall x^{\safe}, y^{\safe}. ( ( x\leq y \cand x\neq y) \cimp( \succ{}(\succ{0}x) \leq \succ{0}y \cand \succ{}(\succ{0}x) \neq \succ{0}y))\\ |
30 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}. x+y=y+x\\ |
31 | 187 | pbaillot | \forall x^{\safe}. x+0=x\\ |
32 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}. x+\succ{}y=\succ{}(x+y)\\ |
33 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}, z^{\safe}. (x+y)+z=x+(y+z)\\ |
34 | 230 | adas | \forall x^{\safe}, y^{\safe}, z^{\safe}. ( x+y \leq x+z \ciff y\leq z)\\ |
35 | 230 | adas | \forall x^{\safe} 0\cdot x =0\\ |
36 | 187 | pbaillot | \forall x^{\normal}, y^{\safe}. x\cdot(\succ{}y)=(x\cdot y)+x\\ |
37 | 187 | pbaillot | \forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x\\ |
38 | 187 | pbaillot | \forall x^{\normal}, y^{\safe}, z^{\safe}. x\cdot(y+z)=(x\cdot y)+(x\cdot z)\\ |
39 | 230 | adas | \forall x^{\normal}, y^{\safe}, z^{\safe}. (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))\\ |
40 | 230 | adas | \forall x^{\normal} . (x\neq 0 \cimp |x|=\succ{}(\hlf{x}))\\ |
41 | 230 | adas | \forall x^{\safe}, y^{\safe}. ( x= \hlf{y} \ciff (\succ{0}x=y \cor \succ{}(\succ{0}x)=y)) |
42 | 187 | pbaillot | \end{array} |
43 | 187 | pbaillot | %\end{equation} |
44 | 227 | adas | $$ |
45 | 227 | adas | |
46 | 227 | adas | |
47 | 230 | adas | |
48 | 230 | adas | |
49 | 230 | adas | % |
50 | 230 | adas | %It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic: |
51 | 230 | adas | %\begin{proposition} |
52 | 230 | adas | % [Length induction] |
53 | 230 | adas | % The axiom schema of formulae, |
54 | 230 | adas | % \begin{equation} |
55 | 230 | adas | % \label{eqn:lind} |
56 | 230 | adas | % ( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|) |
57 | 230 | adas | % \end{equation} |
58 | 230 | adas | % for formulae $A \in \Sigma^\safe_i$ |
59 | 230 | adas | % is equivalent to $\cpind{\Sigma^\safe_i}$. |
60 | 230 | adas | %\end{proposition} |
61 | 230 | adas | %\begin{proof} |
62 | 230 | adas | % Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$. |
63 | 230 | adas | % Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$. |
64 | 230 | adas | %\end{proof} |
65 | 230 | adas | % |
66 | 230 | adas | %Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$. |
67 | 230 | adas | %We will freely use this in place of polynomial induction whenever it is convenient. |