root / CharacterizingPH / soundness.tex @ 251
Historique | Voir | Annoter | Télécharger (5,4 ko)
1 |
\documentclass{amsart} |
---|---|
2 |
\usepackage{amsthm} |
3 |
|
4 |
|
5 |
\input{macros} |
6 |
|
7 |
\begin{document} |
8 |
\section{Logical operations as programs} |
9 |
|
10 |
Any polynomial-time predicate can be conservatively added to BC with only safe inputs. |
11 |
Thus all logical connectives $\neg, \vee, \wedge$ and equality testing $=$ can be implemented as programs with only safe arguments. |
12 |
|
13 |
\section{Soundness} |
14 |
We show that any provably convergent function of $I\Sigma^{N}_i$ is in $\Box_i$. |
15 |
|
16 |
\subsection{Interpreting $\Pi_{i-1}$ formulae as programs} |
17 |
Each $\Pi_{i-1}$ formula is directly interpreted, as in usual WFM, as a descriptive program evaluating whether it is true or not. |
18 |
We define it by induction on formula structure: |
19 |
|
20 |
|
21 |
\[ |
22 |
\begin{array}{rcl} |
23 |
\wit{s,t}{s=t} (;x) & \dfn & =(;s,t) \\ |
24 |
\smallskip |
25 |
\wit{t}{N(t)} (;x) & \dfn & =(;x,t)\\ |
26 |
\smallskip |
27 |
\wit{t}{\Box N(t)} (u;) & \dfn & =(;u,t) \\ |
28 |
\smallskip |
29 |
\wit{\vec t}{A\star B} (;x) & \dfn & \star (; \wit{\vec t}{A} (;x), \wit{\vec t}{B} (;x) ) \\ |
30 |
\smallskip |
31 |
\wit{\vec t}{\exists x^N . A(x)} (;x) & \dfn & \begin{cases} |
32 |
1 & \exists a^N . \wit{a , \vec t}{A(a)} (;x) = 1 \\ |
33 |
0 & \text{otherwise} |
34 |
\end{cases} \\ |
35 |
\smallskip |
36 |
\wit{\vec t}{\forall x^N . A(x)} (;x) & \dfn & |
37 |
\begin{cases} |
38 |
0 & \exists a^N. \wit{a, \vec t}{ A(a)} (;x) = 0 \\ |
39 |
1 & \text{otherwise} |
40 |
\end{cases} |
41 |
\end{array} |
42 |
\] |
43 |
|
44 |
(Notice that, by free-cut elimination, $\Box$-formulae are always of the form $\Box N(t)$, so any composite formulae can be assumed to have only safe arguments. |
45 |
We can also assume that they always occur on the LHS of a sequent.) |
46 |
\subsection{Witness predicate for $\Sigma_i$ formulae} |
47 |
% We give the witness predicate for $\Sigma_i$ formulae assumed to be in prenex form. |
48 |
When $A,B$ are $\Sigma_{i}$ we define: |
49 |
\[ |
50 |
\begin{array}{rcl} |
51 |
\wit{\vec t}{A\star B} (;\vec x , \vec y) & \dfn & \star (; \wit{\vec t}{A} (;\vec x), \wit{\vec t}{B} (;\vec y) ) \\ |
52 |
\smallskip |
53 |
\wit{\vec t}{\exists x . A( x)} (; x, \vec x) & \dfn & \wit{a, \vec t}{A( a)}(;\vec x) \left[ x^N / a\right] |
54 |
\end{array} |
55 |
\] |
56 |
(Notice that this covers all $\Sigma_i$ formulae). |
57 |
|
58 |
\subsection{Witness extraction invariant} |
59 |
% We will show the following result: |
60 |
|
61 |
We will show that, if there is a proof $\pi$ of $\Gamma \seqar \Delta$, then there are programs $\vec f$ such that: |
62 |
\[ |
63 |
\wit{\vec t}{\bigwedge \Gamma} (; \vec x) |
64 |
\quad \implies \quad |
65 |
\wit{\vec t}{\bigvee \Delta } (; \vec f (; \vec x) ) |
66 |
\] |
67 |
|
68 |
\subsection{Defining the programs} |
69 |
We define the extracted programs inductively on a free-cut free proof. |
70 |
|
71 |
\begin{itemize} |
72 |
\item $\forall$ right case. Auxiliary formula $A$ must be $\Pi_{i-1}$ by free-cut elimination. |
73 |
\[ |
74 |
\dfrac{N(a), \Gamma \seqar \Delta , A(a)}{\Gamma \seqar \Delta , \forall x^N. A(x)} |
75 |
\] |
76 |
By the inductive hypothesis we have functions $\vec f^\Delta , \vec f^A$ such that: |
77 |
\[ |
78 |
\wit{a , \vec t}{N(a)} (;x) |
79 |
\wedge |
80 |
\wit{a , \vec t}{\bigwedge \Gamma} (\vec u; \vec x) |
81 |
\implies |
82 |
\wit{a , \vec t}{\bigvee \Delta}{ (; \vec f^\Delta (\vec u ; x , \vec x))} |
83 |
\vee |
84 |
\wit{a , \vec t}{ A} (; \vec f^A (\vec u ; x , \vec x) ) |
85 |
\] |
86 |
Since $A$ is $\Pi_{i-1}$ we can forget about $\vec f^A$. |
87 |
We define $\vec g^\Delta , \vec g^{\forall x^N . A}$ as follows: |
88 |
\[ |
89 |
\begin{array}{rcl} |
90 |
\vec g^{\forall x^N . A} (\vec u ; \vec x) & \dfn & 0 \\ |
91 |
\vec g^\Delta (\vec u ; \vec x) & \dfn & |
92 |
\vec f^\Delta ( \vec u ; \mu a^N . ( \wit{a , \vec t}{A} (;0) = 0 ) , \vec x ) |
93 |
\end{array} |
94 |
\] |
95 |
(Notice that the minimisation program has the same complexity as the witness predicate for $\forall x^N . A(x)$, i.e.\ $\Pi_{i-1}$.) |
96 |
\item Contraction right case. Need to test the witness predicate using conditional. (No need for $\mu$s.). |
97 |
Given such a step, |
98 |
\[ |
99 |
\dfrac{\Gamma \seqar \Delta , A , A}{\Gamma \seqar \Delta , A} |
100 |
\] |
101 |
by the inductive hypothesis we have programs $\vec f^\Delta , \vec f^0 , \vec f^1$ such that: |
102 |
\[ |
103 |
\wit{\vec t}{\bigwedge \Gamma} (\vec u ; \vec x) |
104 |
\implies |
105 |
\wit{\vec t}{\bigvee \Delta} (; \vec f^\Delta (\vec u ; \vec x) ) |
106 |
\vee |
107 |
\wit{\vec t}{A} (;\vec f^0 (\vec u ; \vec x)) |
108 |
\vee |
109 |
\wit{\vec t}{A} (; \vec f^1 (\vec u ; \vec x)) |
110 |
\] |
111 |
Construct the programs $\vec g^\Delta, \vec g^A$ as follows: |
112 |
\[ |
113 |
\begin{array}{rcl} |
114 |
\vec g^\Delta (\vec u ; \vec x) & \dfn & \vec f^\Delta (\vec u ; \vec x) \\ |
115 |
\vec g^A (\vec u; \vec x) & \dfn & |
116 |
\begin{cases} |
117 |
\vec f^0 (\vec u ; \vec x) & \wit{\vec t}{A} (;\vec f^0(\vec u ; \vec x) =1 ) \\ |
118 |
\vec f^1 (\vec u ; \vec x) & \text{otherwise} |
119 |
\end{cases} |
120 |
\end{array} |
121 |
\] |
122 |
\item Induction. NB: Can assume no side-formulae on the right!! |
123 |
\[ |
124 |
\dfrac{\Box N(a), \Gamma, A(a) \seqar A(s_i a)}{\Box N(s), \Gamma , A(0) \seqar A(s)} |
125 |
\] |
126 |
We need to keep track of all the terms in the witness predicate. |
127 |
\[ |
128 |
% \begin{array}{rl} |
129 |
% &\wit{a, t(a), t(s_i a), \vec t}{LHS} (u , \vec u ; \vec x , \vec y) |
130 |
% \\ |
131 |
% \implies & |
132 |
% \wit{a , t(a), t(s_i a), \vec t}{A(s_i a)} (; \vec f^A (u , \vec u ; \vec x , \vec y) ) |
133 |
% \vee |
134 |
% \wit{a , t(a), t(s_i a), \vec t}{\bigvee \Delta} (; \vec f^\Delta (u , \vec u ; \vec x , \vec y) ) |
135 |
% \end{array} |
136 |
\wit{a, t(a), t(s_i a), \vec t}{LHS} (u , \vec u ; \vec x , \vec y) |
137 |
\implies |
138 |
\wit{a , t(a), t(s_i a), \vec t}{A(s_i a)} (; \vec f^i (u , \vec u ; \vec x , \vec y) ) |
139 |
\] |
140 |
Define $\vec g$ by safe recursion as follows: |
141 |
\[ |
142 |
\begin{array}{rcl} |
143 |
\vec g (0 , \vec u ; \vec x , \vec y) & \dfn & \vec y \\ |
144 |
\vec g (s_i u, \vec u ; \vec x , \vec y) & \dfn & \vec f^i ( u, \vec u; \vec x, \vec g (u, \vec u ; \vec x , \vec y) ) |
145 |
\end{array} |
146 |
\] |
147 |
\end{itemize} |
148 |
\subsection{Proof of correctness} |
149 |
|
150 |
\end{document} |