Statistiques
| Révision :

root / CSL17 / tech-report / main.tex @ 251

Historique | Voir | Annoter | Télécharger (2,71 ko)

1 251 adas
\documentclass[a4paper]{amsart}
2 251 adas
3 251 adas
\usepackage{amsmath}
4 251 adas
\usepackage{amsthm}
5 251 adas
\usepackage{amssymb}
6 251 adas
\usepackage{microtype}
7 251 adas
\usepackage[dvipsnames]{xcolor}
8 251 adas
\usepackage{hyperref}
9 251 adas
10 251 adas
11 251 adas
12 251 adas
\bibliographystyle{plainurl}% the recommended bibstyle
13 251 adas
14 251 adas
\usepackage[lutzsyntax]{virginialake}
15 251 adas
\input{ph-macros}
16 251 adas
17 251 adas
18 251 adas
\title[Polynomial hierarchy in an unbounded arithmetic]{An implicit characterisation of the polynomial hierarchy in an unbounded arithmetic}
19 251 adas
20 251 adas
\author{Patrick Baillot}
21 251 adas
\author{Anupam Das}
22 251 adas
23 251 adas
24 251 adas
\begin{document}
25 251 adas
26 251 adas
\maketitle
27 251 adas
28 251 adas
\begin{abstract}
29 251 adas
We consider extensions of theories based on the Bellantoni-Cook function algebra for polynomial time functions ($\fptime$) by induction principles without bounds on quantifiers. Instead, we limit quantification to `safe' arguments and show that the provably total functions are just those of the functional polynomial hierarchy ($\fph$). Our witness extraction proof relies on \emph{free-cut elimination} in the logic, making use of the \emph{witness function method}, due to Buss, rather than realisability and Dialectica approaches more common in implicit complexity. Our results closely resemble analogous ones from bounded arithmetic, only for an unbounded setting, and the proof generalises those for previous approaches characterising $\fptime$ via ramified theories.
30 251 adas
%\patrick{Remove: We present further comparisons to the bounded arithmetic setting and give tiered arithmetic theories analogous to the Si2 and Vi hierarchies of bounded arithmetic.}
31 251 adas
\end{abstract}
32 251 adas
%\begin{abstract}
33 251 adas
%We consider extensions of equational theories based on the Bellantoni-Cook function algebra for FPTIME by induction principles without bounds on quantifiers. Instead, we limit quantification to 'safe' variables and show that the provably total functions are just those of FPH. This closely resembles analogous results from bounded arithmetic, only for an unbounded setting, and the proof generalises those for previous approaches characterising FPTIME via the Bellantoni-Cook framework. We present further comparisons to the bounded arithmetic setting and give two-sorted arithmetic theories analogous to the Si2 and Vi hierarchies of bounded arithmetic.
34 251 adas
% \end{abstract}
35 251 adas
36 251 adas
\input{intro}
37 251 adas
\input{preliminaries}
38 251 adas
%\input{sequence-coding}
39 251 adas
\input{arithmetic}
40 251 adas
\input{soundness}
41 251 adas
\input{completeness}
42 251 adas
%\input{further}
43 251 adas
44 251 adas
\input{conclusions}
45 251 adas
46 251 adas
47 251 adas
48 251 adas
%\subparagraph*{Acknowledgements.}
49 251 adas
%
50 251 adas
%I want to thank \dots
51 251 adas
52 251 adas
53 251 adas
%%
54 251 adas
%% Bibliography
55 251 adas
%%
56 251 adas
57 251 adas
%% Either use bibtex (recommended),
58 251 adas
59 251 adas
\newpage
60 251 adas
\bibliographystyle{alpha}
61 251 adas
\bibliography{ph-biblio}
62 251 adas
63 251 adas
%% .. or use the thebibliography environment explicitely
64 251 adas
65 251 adas
\newpage
66 251 adas
\appendix
67 251 adas
\input{appendix-arithmetic}
68 251 adas
%%\input{pv-theories}
69 251 adas
%\input{appendix-sequent-calculus}
70 251 adas
%\input{appendix-soundness}
71 251 adas
\input{appendix-completeness}
72 251 adas
73 251 adas
\end{document}