Statistiques
| Révision :

root / CSL17 / completeness.tex @ 250

Historique | Voir | Annoter | Télécharger (3,35 ko)

1 206 pbaillot
\section{Completeness}\label{sect:completeness}
2 233 adas
We now turn to proving the converse result to the last section, that our theories $\arith^i$ are strong enough to represent any $\fphi i $ function.
3 166 adas
The main result of this section is the following:
4 166 adas
5 166 adas
\begin{theorem}
6 166 adas
	\label{thm:completeness}
7 199 pbaillot
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$.
8 168 adas
\end{theorem}
9 233 adas
\begin{proof}[Proof sketch]
10 233 adas
 The proof proceeds by induction on the construction of $\mubci{i-1}$ program $f(\vec u ; \vec x)$ to construct a suitable formula $A_f(\vec u, \vec x)$ .  The case of initial functions is easy, by using the formulas we gave in Sect. \ref{sect:graphsbasicfunctions}. The case of safe composition is also simple, and makes use of the $\rais$ rule and simply combines previously defined graphs by \emph{modus ponens} (or, equivalently, $\cut$) and logical steps.
11 233 adas
 Naturally, the interesting cases are predicative recursion and predicative minimisation.
12 224 pbaillot
13 233 adas
 For predicative recursion, the basic idea is to follow the classical simulation of primitive recursion in arithmetic, adapted to recursion on notation, by encoding the sequence of recursive calls as an integer $w$.
14 233 adas
 The main technical difficulty is the representation of (de)coding functions $\beta (k, x)$ (``the $k$th element of the sequence $x$'') and $\langle x,y \rangle$ (``the pair $(x,y)$'').
15 235 adas
 For this we represent instead the length-bounded variants of these functions given towards the end of Sect.~\ref{sect:prelims}, relying on the bounded minimisation and polychecking results, Lemmas~\ref{lem:bounded-minimisation} and \ref{lem:polychecking}, to find appropriate length bounds.
16 233 adas
%  which is sorted in a suitable way so that the formula $A_f$  is in the same class $\Sigma^{\safe}_i$ as $A_g$,  $A_{h_0}$ and $A_{h_1}$.  This can be obtained by defining  the predicate $\beta (k, w, y)$ with $k$ in $\normal$ and $w$, $y$ in $\safe$.
17 168 adas
18 224 pbaillot
19 233 adas
 For predicative minimisation, assume $f$ is defined as  $\succ 1 \mu x .( g(\vec u ; \vec x , x) =_2 0)$ (or $0$ if no such $x$ exists).
20 233 adas
  By induction hypothesis we have a $\Sigma^{\safe}_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$  satisfying the property. We then define $A_f(\vec u ; \vec x , z)$ as the following $\Sigma^{\safe}_{i}$ formula:
21 224 pbaillot
\[
22 224 pbaillot
\begin{array}{rl}
23 224 pbaillot
&\left(
24 224 pbaillot
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)
25 224 pbaillot
\right) \\
26 224 pbaillot
\cor & \left(
27 224 pbaillot
\begin{array}{ll}
28 224 pbaillot
z\neq 0
29 224 pbaillot
& \cand\   \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\
30 224 pbaillot
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1)
31 224 pbaillot
\end{array}
32 224 pbaillot
\right)
33 224 pbaillot
\end{array}
34 224 pbaillot
\]
35 234 adas
As for the analogous bounded arithmetic theory $S^i_2$ (\cite{Buss86book}, Thm 20, p. 58),  $\arith^i$ can prove a \emph{minimisation} principle for $\Sigma^\safe_{i-1}$ formulas, allowing us to extract the \emph{least} witness of a safe existential, which we apply to $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$. From here we are able to readily prove the totality of $A_f(\vec u ; \vec x , z)$, notably relying crucially on classical reasoning.
36 224 pbaillot
\end{proof}
37 168 adas
38 168 adas
39 198 pbaillot
40 168 adas
41 168 adas
42 168 adas
43 171 adas
44 217 pbaillot
45 168 adas
46 168 adas
47 195 pbaillot
48 195 pbaillot
49 168 adas
50 197 pbaillot
51 168 adas
52 168 adas
53 168 adas
54 168 adas
55 168 adas
56 168 adas