Statistiques
| Révision :

root / CSL16 / appendix-bc-convergence.tex @ 249

Historique | Voir | Annoter | Télécharger (5,18 ko)

1
\section{Further proof details for Thm.~\ref{thm:arith-proves-bc-conv}, Sect.~\ref{sect:bc-convergence}}
2
\label{sect:app-bc-conv}
3

    
4
For derivation \eqref{eqn:prn-cvg-base} $\alpha$ is,
5
	\[
6
	\vlderivation{
7
	%	\vliin{\cut}{}{ \word (\vec x) \seqar \word ( g (\vec v ; \vec x)) }{
8
	%		\vlin{\rigrul{!}}{}{\seqar !\word (v)}{
9
	%			\vlin{assump}{}{\seqar \word (\vec v)}{\vlhy{}}
10
	%			}
11
	%		}{
12
			\vliin{\cut}{}{ !\word (\vec v ) , \word (\vec x) \seqar \word (g (\vec v ; \vec x )) }{
13
				\vlhy{\seqar \forall \vec v^{!\word} . \forall \vec x^\word . \word (g (\vec v ; \vec x)) }
14
				}{
15
				\vliq{\lefrul{\forall}}{  }{ !\word (\vec v) , \word (\vec x) , \forall \vec v^{!\word} . \forall \vec x^\word \word (g(\vec v ; \vec x )) \seqar \word (g(\vec v ; \vec x )) }{
16
					\vlin{\id}{}{\word (g(\vec v ; \vec x )) \seqar \word (g(\vec v ; \vec x ))}{\vlhy{}}
17
					}
18
				}
19
	%		}
20
		}
21
	\]
22
	and $\beta$ is:
23
	\[
24
	\hspace{-1em}
25
	\small
26
	\vlderivation{
27
		\vliin{\cut}{}{!\word (\vec v) , \word (\vec x) \seqar \word ( f ( \epsilon , \vec v ; \vec x ) ) }{
28
			\vlhy{!\word (\vec v) , \word (\vec x) \seqar \word (g (\vec v ; \vec x) ) }
29
			}{
30
			\vliin{\cut}{}{ \word (g (\vec v ; \vec x) ) \seqar \word (f (\epsilon, \vec v ; \vec x) ) }{
31
				\vlin{\closure{\eqspec}}{}{ \seqar f(\epsilon , \vec v ; \vec x) = g(\vec v ; \vec x) }{\vlhy{}}
32
				}{
33
				\vlin{=}{}{\word ( g(\vec v ; \vec x) ) , f(\epsilon , \vec v ; \vec x) = g(\vec v ; \vec x)  \seqar \word (f (\epsilon, \vec v ; \vec x) ) }{\vlhy{}}
34
				}
35
			}
36
		}
37
	\]
38
	
39
	Suppose $f$ is defined by safe composition as follows:
40
	\[
41
	f( \vec u ; \vec x )
42
	\quad = \quad
43
	h( \vec g (\vec u ; )  ; \vec g' ( \vec u ; \vec x ) )
44
	\]
45
	
46
	By the inductive hypothesis we already have proofs of the covergence of $h$ and each $g_i$ and $g_j'$. Thus we construct the required proof as follows:
47
	\[
48
	\hspace{-1em}
49
	\tiny
50
	\vlderivation{
51
		\vliq{\rigrul{\forall}}{}{ \seqar \forall\vec u^{!\word} . \forall \vec x^\word . \word( f(\vec u ; \vec x ) ) }{
52
			\vliq{\beta}{}{ !\word (\vec u) , \word (\vec x) \seqar \word ( f( \vec u ; \vec x ) ) }{
53
				\vliq{\cntr}{}{  !\word (\vec u) , \word (\vec x) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x )  ) )  }{
54
					\vliiiq{\cut}{}{!\word (\vec u) , \dots ,  !\word (\vec u) , \word (\vec x) , \dots , \word (\vec x) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x )  ) )   }{
55
						\vlhy{
56
							\left\{  
57
							\vlderivation{
58
								\vlin{\rigrul{!}}{}{ !\word (\vec u) \seqar !\word ( g_i (\vec u ;) ) }{
59
									\vliq{\alpha}{}{ !\word (\vec u) \seqar \word ( g_i (\vec u ;) }{
60
										\vltr{\IH}{ \forall \vec u^{!\word} . \word (g_i (\vec u ;) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
61
										}
62
									}
63
								}
64
							\right\}_{i \leq |\vec g| }
65
							}
66
						}{
67
						\vlhy{
68
							\left\{
69
							\vlderivation{
70
								\vliq{\alpha}{}{ !\word ( \vec u )  , \word (\vec x) \seqar \word  ( g_j' ( \vec u ; \vec x ) ) }{
71
									\vltr{\IH}{ \seqar \forall \vec u^{!\word}. \forall \vec x^\word . \word ( g_j' (\vec u ; \vec x) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
72
									}
73
								}
74
							\right\}_{j \leq |\vec g'|}
75
							}
76
						}{
77
						\vliq{\alpha}{}{ !\word ( \vec g (\vec u ;) ) , \word ( \vec g ' ( \vec u ; \vec x ) ) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x )  )  ) ) }{
78
							\vltr{\IH}{ \seqar \forall \vec v^{!\word} . \forall \vec y^\word . \word ( h( \vec v ; \vec y ) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
79
							}
80
						}
81
					}
82
				}
83
			}
84
		}
85
	\]
86
	where $\alpha$ and $\beta$ are similar to before.
87
	
88
	
89
	We also give the case of the conditional initial function $C (; x, y_\epsilon , y_0, y_1)$, to exemplify the use of additives. 
90
	%The conditional is defined equationally as:
91
	%\[
92
	%\begin{array}{rcl}
93
	%C (; \epsilon, y_\epsilon , y_0, y_1  ) & = & y_\epsilon \\
94
	%C(; \succ_0 x , y_\epsilon , y_0, y_1) & = & y_0 \\
95
	%C(; \succ_1 x , y_\epsilon , y_0, y_1) & = & y_1 
96
	%\end{array}
97
	%\]
98
	Let $\vec y = ( y_\epsilon , y_0, y_1 )$ and construct the required proof as follows:
99
	\[
100
	\small
101
	\vlderivation{
102
		\vliq{}{}{ \word (x) , \word (\vec y) \seqar \word ( C(; x ,\vec y) )}{
103
			\vlin{2\cdot \laor}{}{ x = \epsilon \laor \exists z^\word . x = \succ_0 z \laor \exists z^\word x = \succ_1 z , \word (\vec y) \seqar \word ( C(;x \vec y) ) }{ \vlhy{
104
				\vlderivation{
105
				\vliq{}{}{ x = \epsilon , \word (\vec y) \seqar \word ( C(; x , \vec y) ) }{
106
									\vliq{}{}{ \word (\vec y) \seqar \word ( C( ; \epsilon , \vec y ) ) }{
107
										\vlin{\wk}{}{ \word (\vec y) \seqar \word (y_\epsilon) }{ 
108
											\vlin{\id}{}{\word (y_\epsilon) \seqar \word ( y_\epsilon )}{\vlhy{}}
109
										}
110
									}
111
								}
112
				}
113
\qquad
114
				\left\{ 
115
				\vlderivation{
116
					\vlin{\lefrul{\exists}}{}{ \exists z^\word . x = \succ_i z , \word (\vec y) \seqar \word ( C(;x , \vec y) ) }{
117
						\vliq{}{}{ x = \succ_i a , \word (\vec y ) \seqar \word (C(; x ,\vec y)) }{
118
							\vliq{}{}{ \word (\vec y) \seqar \word ( C(; \succ_i a , \vec y ) ) }{
119
								\vlin{\wk}{}{ \word (\vec y) \seqar \word (y_i) }{
120
									\vlin{\id}{}{\word (y_i) \seqar \word (y_i)}{\vlhy{}}
121
								}
122
							}
123
						}
124
					}
125
				}
126
				\right\}_{i = 0,1}
127
			}
128
		}
129
	}
130
}
131
\]
132
whence the result follows by $\forall$-introduction.
133
%The other initial functions are routine.