root / CSL16 / appendix-bc-convergence.tex @ 249
Historique | Voir | Annoter | Télécharger (5,18 ko)
1 |
\section{Further proof details for Thm.~\ref{thm:arith-proves-bc-conv}, Sect.~\ref{sect:bc-convergence}} |
---|---|
2 |
\label{sect:app-bc-conv} |
3 |
|
4 |
For derivation \eqref{eqn:prn-cvg-base} $\alpha$ is, |
5 |
\[ |
6 |
\vlderivation{ |
7 |
% \vliin{\cut}{}{ \word (\vec x) \seqar \word ( g (\vec v ; \vec x)) }{ |
8 |
% \vlin{\rigrul{!}}{}{\seqar !\word (v)}{ |
9 |
% \vlin{assump}{}{\seqar \word (\vec v)}{\vlhy{}} |
10 |
% } |
11 |
% }{ |
12 |
\vliin{\cut}{}{ !\word (\vec v ) , \word (\vec x) \seqar \word (g (\vec v ; \vec x )) }{ |
13 |
\vlhy{\seqar \forall \vec v^{!\word} . \forall \vec x^\word . \word (g (\vec v ; \vec x)) } |
14 |
}{ |
15 |
\vliq{\lefrul{\forall}}{ }{ !\word (\vec v) , \word (\vec x) , \forall \vec v^{!\word} . \forall \vec x^\word \word (g(\vec v ; \vec x )) \seqar \word (g(\vec v ; \vec x )) }{ |
16 |
\vlin{\id}{}{\word (g(\vec v ; \vec x )) \seqar \word (g(\vec v ; \vec x ))}{\vlhy{}} |
17 |
} |
18 |
} |
19 |
% } |
20 |
} |
21 |
\] |
22 |
and $\beta$ is: |
23 |
\[ |
24 |
\hspace{-1em} |
25 |
\small |
26 |
\vlderivation{ |
27 |
\vliin{\cut}{}{!\word (\vec v) , \word (\vec x) \seqar \word ( f ( \epsilon , \vec v ; \vec x ) ) }{ |
28 |
\vlhy{!\word (\vec v) , \word (\vec x) \seqar \word (g (\vec v ; \vec x) ) } |
29 |
}{ |
30 |
\vliin{\cut}{}{ \word (g (\vec v ; \vec x) ) \seqar \word (f (\epsilon, \vec v ; \vec x) ) }{ |
31 |
\vlin{\closure{\eqspec}}{}{ \seqar f(\epsilon , \vec v ; \vec x) = g(\vec v ; \vec x) }{\vlhy{}} |
32 |
}{ |
33 |
\vlin{=}{}{\word ( g(\vec v ; \vec x) ) , f(\epsilon , \vec v ; \vec x) = g(\vec v ; \vec x) \seqar \word (f (\epsilon, \vec v ; \vec x) ) }{\vlhy{}} |
34 |
} |
35 |
} |
36 |
} |
37 |
\] |
38 |
|
39 |
Suppose $f$ is defined by safe composition as follows: |
40 |
\[ |
41 |
f( \vec u ; \vec x ) |
42 |
\quad = \quad |
43 |
h( \vec g (\vec u ; ) ; \vec g' ( \vec u ; \vec x ) ) |
44 |
\] |
45 |
|
46 |
By the inductive hypothesis we already have proofs of the covergence of $h$ and each $g_i$ and $g_j'$. Thus we construct the required proof as follows: |
47 |
\[ |
48 |
\hspace{-1em} |
49 |
\tiny |
50 |
\vlderivation{ |
51 |
\vliq{\rigrul{\forall}}{}{ \seqar \forall\vec u^{!\word} . \forall \vec x^\word . \word( f(\vec u ; \vec x ) ) }{ |
52 |
\vliq{\beta}{}{ !\word (\vec u) , \word (\vec x) \seqar \word ( f( \vec u ; \vec x ) ) }{ |
53 |
\vliq{\cntr}{}{ !\word (\vec u) , \word (\vec x) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x ) ) ) }{ |
54 |
\vliiiq{\cut}{}{!\word (\vec u) , \dots , !\word (\vec u) , \word (\vec x) , \dots , \word (\vec x) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x ) ) ) }{ |
55 |
\vlhy{ |
56 |
\left\{ |
57 |
\vlderivation{ |
58 |
\vlin{\rigrul{!}}{}{ !\word (\vec u) \seqar !\word ( g_i (\vec u ;) ) }{ |
59 |
\vliq{\alpha}{}{ !\word (\vec u) \seqar \word ( g_i (\vec u ;) }{ |
60 |
\vltr{\IH}{ \forall \vec u^{!\word} . \word (g_i (\vec u ;) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
61 |
} |
62 |
} |
63 |
} |
64 |
\right\}_{i \leq |\vec g| } |
65 |
} |
66 |
}{ |
67 |
\vlhy{ |
68 |
\left\{ |
69 |
\vlderivation{ |
70 |
\vliq{\alpha}{}{ !\word ( \vec u ) , \word (\vec x) \seqar \word ( g_j' ( \vec u ; \vec x ) ) }{ |
71 |
\vltr{\IH}{ \seqar \forall \vec u^{!\word}. \forall \vec x^\word . \word ( g_j' (\vec u ; \vec x) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
72 |
} |
73 |
} |
74 |
\right\}_{j \leq |\vec g'|} |
75 |
} |
76 |
}{ |
77 |
\vliq{\alpha}{}{ !\word ( \vec g (\vec u ;) ) , \word ( \vec g ' ( \vec u ; \vec x ) ) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x ) ) ) ) }{ |
78 |
\vltr{\IH}{ \seqar \forall \vec v^{!\word} . \forall \vec y^\word . \word ( h( \vec v ; \vec y ) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
79 |
} |
80 |
} |
81 |
} |
82 |
} |
83 |
} |
84 |
} |
85 |
\] |
86 |
where $\alpha$ and $\beta$ are similar to before. |
87 |
|
88 |
|
89 |
We also give the case of the conditional initial function $C (; x, y_\epsilon , y_0, y_1)$, to exemplify the use of additives. |
90 |
%The conditional is defined equationally as: |
91 |
%\[ |
92 |
%\begin{array}{rcl} |
93 |
%C (; \epsilon, y_\epsilon , y_0, y_1 ) & = & y_\epsilon \\ |
94 |
%C(; \succ_0 x , y_\epsilon , y_0, y_1) & = & y_0 \\ |
95 |
%C(; \succ_1 x , y_\epsilon , y_0, y_1) & = & y_1 |
96 |
%\end{array} |
97 |
%\] |
98 |
Let $\vec y = ( y_\epsilon , y_0, y_1 )$ and construct the required proof as follows: |
99 |
\[ |
100 |
\small |
101 |
\vlderivation{ |
102 |
\vliq{}{}{ \word (x) , \word (\vec y) \seqar \word ( C(; x ,\vec y) )}{ |
103 |
\vlin{2\cdot \laor}{}{ x = \epsilon \laor \exists z^\word . x = \succ_0 z \laor \exists z^\word x = \succ_1 z , \word (\vec y) \seqar \word ( C(;x \vec y) ) }{ \vlhy{ |
104 |
\vlderivation{ |
105 |
\vliq{}{}{ x = \epsilon , \word (\vec y) \seqar \word ( C(; x , \vec y) ) }{ |
106 |
\vliq{}{}{ \word (\vec y) \seqar \word ( C( ; \epsilon , \vec y ) ) }{ |
107 |
\vlin{\wk}{}{ \word (\vec y) \seqar \word (y_\epsilon) }{ |
108 |
\vlin{\id}{}{\word (y_\epsilon) \seqar \word ( y_\epsilon )}{\vlhy{}} |
109 |
} |
110 |
} |
111 |
} |
112 |
} |
113 |
\qquad |
114 |
\left\{ |
115 |
\vlderivation{ |
116 |
\vlin{\lefrul{\exists}}{}{ \exists z^\word . x = \succ_i z , \word (\vec y) \seqar \word ( C(;x , \vec y) ) }{ |
117 |
\vliq{}{}{ x = \succ_i a , \word (\vec y ) \seqar \word (C(; x ,\vec y)) }{ |
118 |
\vliq{}{}{ \word (\vec y) \seqar \word ( C(; \succ_i a , \vec y ) ) }{ |
119 |
\vlin{\wk}{}{ \word (\vec y) \seqar \word (y_i) }{ |
120 |
\vlin{\id}{}{\word (y_i) \seqar \word (y_i)}{\vlhy{}} |
121 |
} |
122 |
} |
123 |
} |
124 |
} |
125 |
} |
126 |
\right\}_{i = 0,1} |
127 |
} |
128 |
} |
129 |
} |
130 |
} |
131 |
\] |
132 |
whence the result follows by $\forall$-introduction. |
133 |
%The other initial functions are routine. |