Statistiques
| Révision :

root / CSL16 / draft / preliminaries.tex @ 249

Historique | Voir | Annoter | Télécharger (16,51 ko)

1 101 adas
\section{Preliminaries}
2 101 adas
%
3 101 adas
%\todo{consider removing and just have a section on linear logic, including free-cut elimination.}
4 101 adas
5 101 adas
\anupam{need to add a note on semantics}
6 101 adas
%
7 101 adas
%
8 101 adas
%\paragraph*{Notation}
9 101 adas
%Fix conventions here for use throughout:
10 101 adas
%\begin{itemize}
11 101 adas
%\item Eigenvariables: $a, b , c$.
12 101 adas
%\item (Normal) variables: $u,v,w$. (only when distinction is important, e.g.\ $u^{!\nat}$).
13 101 adas
%\item (Safe) variables: $x,y,z$. (as above, e.g.\ $x^\nat$.)
14 101 adas
%\item Terms: $r,s,t$.
15 101 adas
%\item Formulae: $A,B,C$.
16 101 adas
%\item Atomic formulae: $p,q$.
17 101 adas
%\item Free variables in a term, formula, sequent: $FV(u)$, $FV(A)$, $FV(\Gamma)$
18 101 adas
%\item Sequents: $\Gamma, \Delta, \Sigma, \Pi$.
19 101 adas
%\item lists of formulas $A(\vec{x})$, $!A(\vec{x})$ (in particular for $A=N$).
20 101 adas
%\item Proofs: $\pi, \rho, \sigma$.
21 101 adas
%\item Theories: $\mathcal T$. Sequent systems: $\mathcal S$.
22 101 adas
%\end{itemize}
23 101 adas
%
24 101 adas
%\subsection{Linear logic}
25 101 adas
26 101 adas
%\anupam{use a system that is already in De Morgan form, for simplicity.}
27 101 adas
%\anupam{Have skipped units, can reconsider this when in arithmetic. Also in affine setting can be recovered by any contradiction/tautology.}
28 101 adas
29 101 adas
We formulate linear logic without units with usual notation for the multiplicatives, additives and exponentials from \cite{Girard87}. We restrict negation to the atoms, thus formulae are always in De Morgan normal form, and this is reflected in the sequent system below. We have included rules for arbitrary weakening for working in affine settings.
30 101 adas
31 101 adas
%\anupam{positive and negative.}
32 101 adas
33 101 adas
34 101 adas
35 101 adas
\begin{definition}
36 101 adas
%[Sequent calculus for linear logic]
37 101 adas
[Sequent calculus for affine linear logic]
38 101 adas
\label{def:LLsequentcalculus}
39 101 adas
40 101 adas
We define the following calculus:
41 101 adas
\[
42 101 adas
\begin{array}{l}
43 101 adas
\begin{array}{cccc}
44 101 adas
\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
45 101 adas
& \vlinf{\id}{}{p \seqar p}{}
46 101 adas
& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
47 101 adas
& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
48 101 adas
\\
49 101 adas
\noalign{\bigskip}
50 101 adas
%\text{Multiplicatives:} & & & \\
51 101 adas
%\noalign{\bigskip}
52 101 adas
\vliinf{\lefrul{\lor}}{}{\Gamma,\Sigma, A \lor B \seqar \Delta, \Pi}{\Gamma, A \seqar \Delta}{\Sigma , B \seqar \Pi}
53 101 adas
&
54 101 adas
\vlinf{\lefrul{\land}}{}{\Gamma, A\land B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
55 101 adas
&
56 101 adas
\vlinf{\rigrul{\lor}}{}{\Gamma \seqar \Delta, A \lor B}{\Gamma \seqar \Delta, A, B}
57 101 adas
&
58 101 adas
\vliinf{\rigrul{\land}}{}{\Gamma, \Sigma \seqar \Delta , \Pi , A \land B}{\Gamma \seqar \Delta , A}{\Sigma \seqar \Pi , B}
59 101 adas
\\
60 101 adas
\noalign{\bigskip}
61 101 adas
%\text{Additives:} & & & \\
62 101 adas
%\noalign{\bigskip}
63 101 adas
\vliinf{\lefrul{\laor}}{}{\Gamma, A \laor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
64 101 adas
&
65 101 adas
\vlinf{\lefrul{\laand}}{}{\Gamma, A_1\laand A_2 \seqar \Delta}{\Gamma, A_i \seqar \Delta}
66 101 adas
&
67 101 adas
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
68 101 adas
%\quad
69 101 adas
\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A_1\laor A_2}{\Gamma \seqar \Delta, A_i}
70 101 adas
&
71 101 adas
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
72 101 adas
%\quad
73 101 adas
\vliinf{\rigrul{\laand}}{}{\Gamma \seqar \Delta, A \laand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
74 101 adas
\\
75 101 adas
\noalign{\bigskip}
76 101 adas
%\text{Exponentials:} & & & \\
77 101 adas
%\noalign{\bigskip}
78 101 adas
\vlinf{\lefrul{?}}{}{!\Gamma, ?A \seqar ?\Delta}{!\Gamma , A \seqar ?\Delta}
79 101 adas
&
80 101 adas
\vlinf{\lefrul{!}}{}{\Gamma, !A \seqar \Delta}{\Gamma, A \seqar \Delta}
81 101 adas
&
82 101 adas
\vlinf{\rigrul{?}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, A}
83 101 adas
&
84 101 adas
\vlinf{\rigrul{!}}{}{!\Gamma \seqar ?\Delta, !A}{!\Gamma \seqar ?\Delta, A}
85 101 adas
\\
86 101 adas
\noalign{\bigskip}
87 101 adas
%\text{Structural:} & & & \\
88 101 adas
%\noalign{\bigskip}
89 101 adas
90 101 adas
%\vlinf{\lefrul{\wk}}{}{\Gamma, !A \seqar \Delta}{\Gamma \seqar \Delta}  %% linear logic weakening
91 101 adas
\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
92 101 adas
&
93 101 adas
\vlinf{\lefrul{\cntr}}{}{\Gamma, !A \seqar \Delta}{\Gamma, !A, !A \seqar \Delta}
94 101 adas
&
95 101 adas
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, ?A }{\Gamma \seqar \Delta}   %% linear logic weakening
96 101 adas
97 101 adas
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
98 101 adas
&
99 101 adas
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, ?A, ?A}
100 101 adas
\\
101 101 adas
\noalign{\bigskip}
102 101 adas
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
103 101 adas
&
104 101 adas
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
105 101 adas
&
106 101 adas
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
107 101 adas
&
108 101 adas
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
109 101 adas
%\noalign{\bigskip}
110 101 adas
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
111 101 adas
\end{array}
112 101 adas
\end{array}
113 101 adas
\]
114 101 adas
where $p$ is atomic, $i \in \{ 1,2 \}$ and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
115 101 adas
\end{definition}
116 101 adas
%\todo{$\limp$ abbreviation for ...}
117 101 adas
%\todo{bracketing}
118 101 adas
119 101 adas
We do not formally include a symbol for implication but we sometimes write $A \limp B$ as shorthand for $\lnot{A} \lor B$, where $\lnot A$ is the De Morgan dual of $A$. We often omit brackets under associativity of, and when writing long implications we assume the right-most bracketing.
120 101 adas
121 101 adas
We will use standard terminology to track formulae in proofs, as presented in e.g.\ \cite{Buss98:intro-proof-theory}.
122 101 adas
In particular, each rule has a distinguished \textit{principal formula}, e.g.\
123 101 adas
  $A \lor B$ in rule $\lefrul{\lor}$ (and similarly for all rules for connectives) and $?A$ in rule $\rigrul{\cntr}$, and \emph{active formulae}, e.g.\ $A$ and $B$ in $\lefrul{\lor}$ and so on. These induce the notions of (direct) descendants and ancestors in proofs, as in \cite{Buss98:intro-proof-theory}.
124 101 adas
%The  \textit{direct ancestor} relation on occurrences of formulas in a proof is defined to keep track of identity of formulas from line to line, in the usual way.
125 101 adas
126 101 adas
127 101 adas
  % Observe that we do not consider here any exchange rules, the sequence are made of multisets of formulas and exchanges are implicit. Note that this system is \textit{affine} in the sense that it includes general weakening rules $\rigrul{\wk}$ and  $\lefrul{\wk}$, while in linear logic   $\rigrul{\wk}$ (resp. $\lefrul{\wk}$) is restricted to formulas of the form $?A$ (resp. $!A$).   In the following though, by linear logic we will mean affine linear logic.
128 101 adas
  \subsection{Theories and systems}
129 101 adas
%  \anupam{mention equality axioms and first-order theories and models at some point.}
130 101 adas
131 101 adas
 A \emph{language} is a set of nonlogical symbols (i.e.\ constants, functions, predicates) and a \emph{theory} a set of closed formulae over some language. We will assume that all theories extend the theory of equality:
132 101 adas
 \[
133 101 adas
 \begin{array}{rl}
134 101 adas
\refl & \forall x . x = x \\
135 101 adas
\symm & \forall x, y. (x = y \limp y = x )\\
136 101 adas
\trans & \forall x , y , z . ( x = y \limp y = z \limp x = z ) \\
137 101 adas
\subst_f & \forall \vec x , \vec y . (\vec x = \vec y \limp f(\vec x) = f(\vec y) ) \\
138 101 adas
\subst_P & \forall \vec x , \vec y. (\vec x = \vec y \limp P(\vec x) \limp P(\vec y)  )
139 101 adas
 \end{array}
140 101 adas
 \]
141 101 adas
  where $\vec x = \vec y$ is shorthand for $x_1 = y_1 \land \vldots \land x_n = y_n$.
142 101 adas
143 101 adas
\newcommand{\init}{\mathit{init}}
144 101 adas
We consider \emph{systems} of `nonlogical' rules extending Dfn.~\ref{def:LLsequentcalculus}, which we write as follows,
145 101 adas
 \[
146 101 adas
 \begin{array}{cc}
147 101 adas
  \vlinf{\init}{}{ \seqar A}{}  &  \vlinf{(R)}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi  }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} }
148 101 adas
\end{array}
149 101 adas
\]
150 101 adas
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
151 101 adas
 \begin{enumerate}
152 101 adas
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
153 101 adas
$ !\Gamma,  ? \Pi$ are called \textit{context formulas}. In $\init$ $A$ is called a principal formula;
154 101 adas
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ nor $ !\Gamma,  ? \Pi$;
155 101 adas
    \item A system $\system$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
156 101 adas
   \item $ \Sigma'$ (resp. $\Delta'$) does not contain any formula of the shape $?A$ (resp. $!A$).
157 101 adas
 \end{enumerate}
158 101 adas
159 101 adas
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
160 101 adas
 Conditions 2 and 3 are actually standard for nonlogical rules, independently of the logical setting, c.f.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that often we need in our nonlogical rules a notion of \textit{bound} variables in the active formulas (typically for induction rules), and the eigenvariables play this role. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas. Condition 4 and the conventions of 1 is peculiar to our linear logic setting in order to carry out certain proof-theoretic manipulations, mainly free-cut elimination in Sect.~\ref{sect:free-cut-elim}.
161 101 adas
%
162 101 adas
163 101 adas
164 101 adas
 Observe that $\init$ rules can actually be seen as particular cases of $(R)$ rules, with no premise, so in the following we will only consider $(R)$ rules.
165 101 adas
166 101 adas
167 101 adas
%  \patrick{Anupam: note that I had to strengthen the conditions for the rules (R). Condition (1) is needed
168 101 adas
%  to be able to commute a cut with (R), in the case where this cut is with a principal formula of a   ($\rigrul{!}$) rule.
169 101 adas
%
170 101 adas
%  Condition (2) is a sufficient condition to avoid the following situation: cut between a principal formula in say $\Delta'$ in the conclusion of an (R) rule (left premise), and a context formula in $!\Gamma$ in the conclusion of another (R) rule (right premise). Indeed this is not an anchored cut in our sense, but we cannot eliminate it in general (because we cannot commute the cut with (R) up the right premise).
171 101 adas
%  }
172 101 adas
173 101 adas
174 101 adas
175 101 adas
176 101 adas
    To each theory $\theory$ we formally associate the system obtained by adding $\seqar A$ as an $\init$ rule for each $A \in \theory$.\footnote{Notice that this naively satisfies condition 3 since theories consist of only closed formulae.}  A proof in such a system will be called a \textit{ $\mathcal T$-proof}, or just {proof} when there is no risk of confusion.
177 101 adas
%
178 101 adas
%
179 101 adas
%  In what follows we will be interested in an example of theory  $\mathcal T$ which is a form of arithmetic.
180 101 adas
181 101 adas
   Let us give an example of a possible nonlogical rule that appears later in Sect.~\ref{sect:arithmetic}:
182 101 adas
183 101 adas
   \[
184 101 adas
	\vliinf{\ind}{}{ !\word(t), !\Gamma , A(\epsilon) \seqar A(t) , ?\Delta }{!\Gamma , !\word(a), A(a) \seqar A(s_0 a ), ?\Delta }{ !\Gamma , !\word(a), A(a) \seqar A(s_1 a ), ?\Delta }
185 101 adas
\]
186 101 adas
187 101 adas
So here we have $I=\{0,1\}$ (two premises), $\Sigma_i=!\word(a), A(a)$ and $\Delta_i= A(s_i a )$ for $i=0,1$, $\Sigma'= !\word(t), A(\epsilon)$, $\Delta'= A(t)$. So condition 2 is satisfied provided $a\notin FV(!\Gamma, ?\Delta)$ and $a \notin FV(t)$.
188 101 adas
%\[
189 101 adas
%	\vliinf{}{(x \notin \FV(\Gamma, \Delta))}{ !\Gamma , A(\epsilon) \seqar A(t) , ?\Delta }{ !\Gamma , A(x) \seqar A(s_0 x ), ?\Delta }{ !\Gamma, A(x) \seqar A( s_1 x ) , ?\Delta}
190 101 adas
%	\]
191 101 adas
192 101 adas
193 101 adas
  A proof in such a system will be called a \textit{ $\mathcal T$-proof}, or just \textit{proof} when there is no risk of confusion.
194 101 adas
%   The rules of Def. \ref{def:LLsequentcalculus} are called \textit{logical rules} while the rules (ax) and (R) of $\mathcal T$  are called \textit{non-logical}.
195 101 adas
%
196 101 adas
%  As usual rules come with a notion of \textit{principal formulas}, which are a subset of the rules in the conclusion, e.g.:
197 101 adas
%  $A \lor B$ in rule $\lefrul{\lor}$ (and similarly for all rules for connectives); $?A$ in rule $\rigrul{\cntr}$; all conclusion formulas in axiom rules;
198 101 adas
%   $\Sigma', \Delta'$ in rule (R).
199 101 adas
200 101 adas
201 101 adas
% \anupam{15/04: add definitions of theories and systems, unions, rules vs axioms etc. and abuses of notation:
202 101 adas
% 	sometimes use same symbol for theory and system if fixed in advance;
203 101 adas
% 	sometimes coincide axiom with initial rule;
204 101 adas
% 	}
205 101 adas
206 101 adas
\subsection{Some basic proof-theoretic results}
207 101 adas
We briefly survey some well-known results for theories of linear logic, on which we rely in later sections.
208 101 adas
209 101 adas
A rule is \emph{invertible} if each of its upper sequents is derivable from its lower sequent.
210 101 adas
\begin{proposition}
211 101 adas
[Invertible rules, folklore]
212 101 adas
\label{prop:invertible-rules}
213 101 adas
The rules $\lefrul{\land}, \rigrul{\lor}, \lefrul{\lor}, \rigrul{\land}, \lefrul{\exists}, \rigrul{\forall}$ are invertible.
214 101 adas
\end{proposition}
215 101 adas
We will typically write $\inv{c}$ to denote the inverse derivation for a logical symbol $c$.
216 101 adas
217 101 adas
%[cite Avron:`semantics and proof theory of linear logic']
218 101 adas
%
219 101 adas
%We will make much use of the deduction theorem, allowing us to argue informally within a theory for hypotheses that have been promoted.
220 101 adas
%
221 101 adas
%%$$
222 101 adas
%%	\vliiinf{}{}{ \seqar A}{ \seqar C}
223 101 adas
%%	$$
224 101 adas
%
225 101 adas
%%\[
226 101 adas
%%	\vliiinf{R}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi  }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} }
227 101 adas
%%	\]
228 101 adas
229 101 adas
We also rely on the following result, which is also folklore but appeared before in \cite{Avron88}.
230 101 adas
231 101 adas
\begin{theorem}
232 101 adas
	[Deduction, folklore]
233 101 adas
	\label{thm:deduction}
234 101 adas
	If $\theory$ is a theory, $A $ is a closed formula and $\mathcal T \cup\{A\}$ proves $B$, then $\mathcal{T}$ proves $!A \limp B$.
235 101 adas
\end{theorem}
236 101 adas
237 101 adas
The occurrence of $!$ in the deduction theorem above is very important, and is also one of the reasons it can be difficult to reason informally in theories over linear logic.
238 101 adas
239 101 adas
240 101 adas
241 101 adas
%\subsection{Converting axioms to rules in $\MELLW$}
242 101 adas
%
243 101 adas
%\begin{proposition}
244 101 adas
%	An axiom $\Ax$ of the form,
245 101 adas
%	\[
246 101 adas
%	A_1 \limp \vldots \limp A_m \limp !B_1 \limp \vldots \limp !B_n \limp C
247 101 adas
%	\]
248 101 adas
%	is equivalent (over propositional $\LL$) to the rule $\Rl$:
249 101 adas
%	\[
250 101 adas
%	\vliiinf{\Rl}{}{ !\Gamma , A_1 , \dots , A_m \seqar C , ? \Delta  }{ !\Gamma \seqar B_1 , ?\Delta }{\vldots }{ !\Gamma \seqar B_n , ?\Delta}
251 101 adas
%	\]
252 101 adas
%\end{proposition}
253 101 adas
%\begin{proof}
254 101 adas
%	Let us first assume $\Ax$ and derive $\Rl$. From the axiom and Currying, we have a proof of:
255 101 adas
%	\begin{equation}\label{eqn:curried-axiom}
256 101 adas
%	A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C
257 101 adas
%	\end{equation}
258 101 adas
%
259 101 adas
%	This can simply be cut against each of the premisses of $\Rl$, applying appropriate contractions and necessitations, to derive it:
260 101 adas
%	\[
261 101 adas
%	\vlderivation{
262 101 adas
%		\vliq{c}{}{!\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta }{
263 101 adas
%			\vliin{\cut}{}{!\Gamma, \dots , !\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta, \dots , ?\Delta }{
264 101 adas
%				\vlin{!}{}{!\Gamma \seqar !B_n, ?\Delta }{\vlhy{!\Gamma \seqar B_n , ?\Delta }}
265 101 adas
%			}{
266 101 adas
%			\vliin{\cut}{}{\qquad \qquad \qquad \qquad  \vlvdots \qquad \qquad \qquad \qquad }{
267 101 adas
%				\vlin{!}{}{!\Gamma \seqar !B_1 , ?\Delta}{\vlhy{!\Gamma \seqar B_1, ?\Delta }}
268 101 adas
%			}{\vlhy{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C } }
269 101 adas
%		}
270 101 adas
%	}
271 101 adas
%}
272 101 adas
%\]
273 101 adas
%
274 101 adas
%Now let us prove $\Ax$ (again in the form of \eqref{eqn:curried-axiom}) by using $\Rl$ as follows:
275 101 adas
%\[
276 101 adas
%\vliiinf{\Rl}{}{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C }{  \vlderivation{
277 101 adas
%		\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_1 }{
278 101 adas
%			\vlin{!}{}{!B_1 \seqar B_1 }{
279 101 adas
%				\vlin{\id}{}{B_1 \seqar B_1 }{\vlhy{}}
280 101 adas
%			}
281 101 adas
%		}
282 101 adas
%	}  }{\vldots}{
283 101 adas
%	\vlderivation{
284 101 adas
%		\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_n }{
285 101 adas
%			\vlin{!}{}{!B_n \seqar B_n }{
286 101 adas
%				\vlin{\id}{}{B_n \seqar B_n }{\vlhy{}}
287 101 adas
%			}
288 101 adas
%		}
289 101 adas
%	}
290 101 adas
%}
291 101 adas
%\]
292 101 adas
%\end{proof}
293 101 adas
%
294 101 adas
%
295 101 adas
%\textbf{NB:} The proof does not strictly require side formulae $? \Delta$ on the right of the sequent arrow $\seqar$, it would work without them, e.g.\ for the intuitionistic case. In a one-sided setting there is no difference.
296 101 adas
%
297 101 adas
%
298 101 adas
%
299 101 adas
%\begin{corollary}
300 101 adas
%	The induction axiom of $A^1_2$ is equivalent to the rule:
301 101 adas
%	\[
302 101 adas
%	\vliinf{}{(x \notin \FV(\Gamma, \Delta))}{ !\Gamma , !N(t), A(\epsilon) \seqar A(t) , ?\Delta }{ !\Gamma , !N(x), A(x) \seqar A(s_0 x ), ?\Delta }{ !\Gamma, !N(x),  A(x) \seqar A( s_1 x ) , ?\Delta}
303 101 adas
%	\]
304 101 adas
%\end{corollary}
305 101 adas
%\begin{proof}
306 101 adas
%	By proposition above, generalisation and Currying.
307 101 adas
%\end{proof}
308 101 adas
%
309 101 adas
%\begin{proposition}
310 101 adas
% The following induction rule is derivable from the one of the previous corollary:
311 101 adas
%\[
312 101 adas
%	\vliinf{}{(a, \vec{v}, \vec{x} \notin \FV(\Gamma, \Delta))}{ !\Gamma , !N(\vec{w}), N(\vec{y}), !N(t)  \seqar A(t,\vec{w},\vec{y}) , ?\Delta }{ !\Gamma ,  !N(\vec{v}), N(\vec{x}) \seqar A(\epsilon,\vec{v},\vec{x}), ?\Delta }{ !\Gamma ,  !N(\vec{v}), N(\vec{x}),    A(a,\vec{v},\vec{x}) \seqar  A(s_ia,\vec{v},\vec{x}) , ?\Delta}
313 101 adas
%	\]
314 101 adas
%where the second premise corresponds actually to two premises, one for $i=0$ and one for $i=1$.
315 101 adas
%\end{proposition}
316 101 adas
%\subsection{Prenexing}
317 101 adas
%%In the presence of weakening we have a prenex normal form due to the following:
318 101 adas
%%
319 101 adas
%%\[
320 101 adas
%%\vlderivation{
321 101 adas
%%	\vlin{}{}{\exists x . A \lor B \seqar \exists x . (A(x) \lor B) }{
322 101 adas
%%
323 101 adas
%%		}
324 101 adas
%%	}
325 101 adas
%%\]
326 101 adas
%
327 101 adas
%Cannot derive prenexing operations, e.g.\ a problem with $\exists x . A \lor B \seqar \exists x . (A(x) \lor B)$. Can safely add prenexing rules? Or not a problem due to Witness predicate?