Statistiques
| Révision :

root / CSL16 / arithmetic.tex @ 249

Historique | Voir | Annoter | Télécharger (21,59 ko)

1 47 adas
\section{A variant of arithmetic in linear logic}
2 97 adas
\label{sect:arithmetic}
3 121 adas
For the remainder of this article we will consider an implementation of arithmetic in the sequent calculus based on the theory $\bharith$ of Bellantoni and Hofmann in \cite{BelHof:02}. The axioms that we present are obtained from $\bharith$ by using linear logic connectives in place of their classical analogues, calibrating the use of additives or multiplicatives in order to be compatible with the completeness and witnessing arguments that we present in Sects.~\ref{sect:bc-convergence} and \ref{sect:wfm}. We also make use of free variables and the structural delimiters of the sequent calculus to control the logical complexity of nonlogical rules.
4 47 adas
5 47 adas
6 108 adas
We will work in the \emph{affine} variant of linear logic, which validates weakening: $(A \land B )\limp A$. There are many reasons for this; essentially it does not have much effect on complexity while also creating a more robust proof theory. For example it induces the equivalence:
7 108 adas
\(
8 33 adas
!(A\land B) \equiv (!A \land !B)
9 108 adas
\).\footnote{Notice that the right-left direction is already valid in usual linear logic, but the left-right direction requires weakening.}
10 33 adas
11 88 adas
12 53 adas
%We define a variant of arithmetic inspired by Bellantoni and Hofmann's $A^1_2$. We describe later some connections to bounded arithmetic.
13 33 adas
14 33 adas
15 53 adas
\newcommand{\lang}{\mathcal L}
16 33 adas
17 54 adas
\subsection{Axiomatisation and an equivalent rule system}
18 53 adas
19 88 adas
%\begin{definition}
20 88 adas
%[Language]
21 88 adas
We consider the language $\lang$ consisting of the constant symbol $\epsilon$, unary function symbols $\succ_0 , \succ_1$ and the predicate symbol  $\word$, together with function symbols $f,g,h$ etc.
22 88 adas
%\end{definition}
23 53 adas
$\lang$-structures are typically extensions of $\Word = \{ 0,1 \}^*$, in which $\epsilon, \succ_0, \succ_1$ are intended to have their usual interpretations. The $\word$ predicate is intended to indicate those elements of the model that are binary words (in the same way as Peano's $N$ predicate indicates those elements that are natural numbers).
24 53 adas
25 89 adas
As an abbreviation, we write $\word (\vec t)$ for $\bigotimes^{|\vec t|}_{i=1} \word(t_i)$.
26 89 adas
27 54 adas
\begin{remark}
28 54 adas
[Interpretation of natural numbers]
29 88 adas
Notice that the set $\Nat^+$ of positive integers is $\lang$-isomorphic to $\Word$ under the interpretation $\{ \epsilon \mapsto 1 , \succ_0 (x) \mapsto 2x , \succ_1 (x) \mapsto 2x+1 \}$, so we could equally consider what follows as theories over $\Nat^+$.
30 54 adas
\end{remark}
31 53 adas
32 53 adas
33 54 adas
The `basic' axioms are essentially the axioms of Robinson arithmetic (or Peano Arithmetic without induction) without axioms for addition and multiplication.
34 54 adas
%\footnote{They are also similar to the `generative' axioms of Leivant's intrinsic theories [cite] for this signature.}
35 88 adas
Let us write $\forall x^\word . A$ for $\forall x . ( \word(x) \limp A )$ and $\exists x^\word . A$ for $\exists x . ( \word(x) \land A )$. We use the abbreviations $\forall x^{!\word}$ and $\exists x^{!\word}$ similarly.
36 53 adas
37 54 adas
\newcommand{\wordcntr}{\word_\cntr}
38 54 adas
\newcommand{\natcntr}{\nat_\cntr}
39 54 adas
\newcommand{\geneps}{\word_{\epsilon}}
40 54 adas
\newcommand{\genzer}{\word_{0}}
41 54 adas
\newcommand{\genone}{\word_{1}}
42 33 adas
43 33 adas
44 33 adas
\newcommand{\sepeps}{\epsilon}
45 33 adas
\newcommand{\sepzer}{\succ_{0}}
46 33 adas
\newcommand{\sepone}{\succ_{1}}
47 33 adas
48 33 adas
\newcommand{\inj}{\mathit{inj}}
49 33 adas
\newcommand{\surj}{\mathit{surj}}
50 33 adas
51 53 adas
\newcommand{\basic}{\mathit{BASIC}}
52 53 adas
53 33 adas
\begin{definition}
54 53 adas
[Basic axioms]
55 53 adas
The theory $\basic$ consists of the following axioms:
56 33 adas
\[
57 109 adas
\small
58 33 adas
\begin{array}{rl}
59 53 adas
%\wk & (A \land B )\limp A \\
60 109 adas
%\geneps
61 109 adas
& \word(\epsilon) \\
62 109 adas
%\genzer
63 109 adas
& \forall x^\word . \word(\succ_0 x) \\
64 109 adas
%\genone
65 109 adas
& \forall x^\word . \word(\succ_1 x) \\
66 108 adas
%\sepeps & \forall x^\word . (\epsilon \neq \succ_0 x \land \epsilon \neq \succ_1 x) \\
67 108 adas
%\sepzer & \forall x^\word , y^\word. ( \succ_0 x = \succ_0 y \limp x=y ) \\
68 108 adas
%\sepone & \forall x^\word , y^\word. ( \succ_1 x = \succ_1 y \limp x=y ) \\
69 108 adas
%\inj & \forall x^\word . \succ_0 x \neq \succ_1 x \\
70 108 adas
%\surj & \forall x^\word . (x = \epsilon \laor \exists y^\word . x = \succ_0 y \laor \exists y^\word . x = \succ_1 y ) \\
71 108 adas
%\noalign{\smallskip}
72 108 adas
%\wordcntr & \forall x^\word . (\word(x) \land \word(x))
73 108 adas
\end{array}
74 109 adas
%\quad
75 108 adas
\begin{array}{rl}
76 108 adas
%\wk & (A \land B )\limp A \\
77 108 adas
%\geneps & \word(\epsilon) \\
78 108 adas
%\genzer & \forall x^\word . \word(\succ_0 x) \\
79 108 adas
%\genone & \forall x^\word . \word(\succ_1 x) \\
80 109 adas
%\sepeps
81 109 adas
& \forall x^\word . (\epsilon \neq \succ_0 x \land \epsilon \neq \succ_1 x) \\
82 109 adas
%\sepzer
83 109 adas
& \forall x^\word , y^\word. ( \succ_0 x = \succ_0 y \limp x=y ) \\
84 109 adas
%\sepone
85 109 adas
& \forall x^\word , y^\word. ( \succ_1 x = \succ_1 y \limp x=y ) \\
86 108 adas
%\inj & \forall x^\word . \succ_0 x \neq \succ_1 x \\
87 108 adas
%\surj & \forall x^\word . (x = \epsilon \laor \exists y^\word . x = \succ_0 y \laor \exists y^\word . x = \succ_1 y ) \\
88 108 adas
%\noalign{\smallskip}
89 108 adas
%\wordcntr & \forall x^\word . (\word(x) \land \word(x))
90 108 adas
\end{array}
91 109 adas
%\quad
92 108 adas
\begin{array}{rl}
93 108 adas
%\wk & (A \land B )\limp A \\
94 108 adas
%\geneps & \word(\epsilon) \\
95 108 adas
%\genzer & \forall x^\word . \word(\succ_0 x) \\
96 108 adas
%\genone & \forall x^\word . \word(\succ_1 x) \\
97 108 adas
%\sepeps & \forall x^\word . (\epsilon \neq \succ_0 x \land \epsilon \neq \succ_1 x) \\
98 108 adas
%\sepzer & \forall x^\word , y^\word. ( \succ_0 x = \succ_0 y \limp x=y ) \\
99 108 adas
%\sepone & \forall x^\word , y^\word. ( \succ_1 x = \succ_1 y \limp x=y ) \\
100 109 adas
%\inj
101 109 adas
& \forall x^\word . \succ_0 x \neq \succ_1 x \\
102 109 adas
%\surj
103 109 adas
& \forall x^\word . (x = \epsilon \laor \exists y^\word . x = \succ_0 y \laor \exists y^\word . x = \succ_1 y ) \\
104 108 adas
%\noalign{\smallskip}
105 109 adas
%\wordcntr
106 109 adas
& \forall x^\word . (\word(x) \land \word(x))
107 33 adas
\end{array}
108 33 adas
\]
109 54 adas
\end{definition}
110 33 adas
111 88 adas
These axioms insist that, in any model, the set induced by $\word (x)$ has the free algebra $\Word$ as an initial segment.
112 88 adas
Importantly, there is also a form of contraction for the $\word$ predicate.
113 88 adas
We will consider theories over $\basic$ extended by induction schemata:
114 88 adas
115 54 adas
\begin{definition}
116 54 adas
[Induction]
117 120 adas
The \emph{(polynomial) induction} axiom schema, $\ind$, consists of the following axioms,
118 33 adas
\[
119 88 adas
%\begin{array}{rl}
120 88 adas
%& A(\epsilon) \\
121 88 adas
%\limp & !(\forall x^{!\word} . ( A(x) \limp A(\succ_0 x) ) ) \\
122 88 adas
%\limp & !(\forall x^{!\word} . ( A(x) \limp A(\succ_1 x) ) ) \\
123 88 adas
%\limp & \forall x^{!\word} . A(x)
124 88 adas
%\end{array}
125 88 adas
A(\epsilon)
126 88 adas
\limp !(\forall x^{!\word} . ( A(x) \limp A(\succ_0 x) ) )
127 88 adas
\limp  !(\forall x^{!\word} . ( A(x) \limp A(\succ_1 x) ) )
128 88 adas
\limp  \forall x^{!\word} . A(x)
129 33 adas
\]
130 54 adas
for each formula $A(x)$.
131 33 adas
132 120 adas
For a class $\Xi$ of formulae, $\cax{\Xi}{\ind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
133 33 adas
134 54 adas
We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
135 54 adas
\end{definition}
136 34 adas
137 120 adas
We use the terminology `polynomial induction' to maintain consistency with the bounded arithmetic literature, e.g.\ in \cite{Buss86book}, where it is distinguished from induction on the \emph{value} of a string (construed as a natural number). The two forms have different computational behaviour, specifically with regards to complexity, but we will restrict attention to $\ind$ throughout this work, and thus may simply refer to it as `induction'.
138 59 adas
139 120 adas
140 88 adas
%\anupam{in fact just give general case for a universal closed formula. Then remark about invertibility of negation giving purely positive initial steps. These occur in section 6 so no need to write them out here.}
141 54 adas
\begin{proposition}
142 54 adas
[Equivalent rules]
143 108 adas
\label{prop:equiv-rules}
144 54 adas
$\basic$ is equivalent to the following set of rules,
145 34 adas
\[
146 109 adas
\small
147 88 adas
\begin{array}{l}
148 88 adas
\begin{array}{cccc}
149 88 adas
\vlinf{\geneps}{}{\seqar \word (\epsilon)}{}&
150 88 adas
\vlinf{\genzer}{}{\word(t) \seqar \word(\succ_0 t)}{}&
151 88 adas
\vlinf{\sepeps_0}{}{ \word (t)   \seqar \epsilon \neq \succ_0 t}{} &
152 88 adas
\vlinf{\sepzer}{}{\word (s) , \word (t)  , \succ_0 s = \succ_0 t\seqar s = t }{}\\
153 88 adas
\vlinf{\inj}{}{\word(t) \seqar\succ_0 t \neq \succ_1 t}{}&
154 88 adas
\vlinf{\genone}{}{\word(t) \seqar \word(\succ_1 t)}{}&
155 88 adas
\vlinf{\sepeps_1}{}{ \word (t)   \seqar \epsilon \neq \succ_1 t }{}&
156 88 adas
\vlinf{\sepone}{}{\word (s) , \word (t)  , \succ_1 s = \succ_1 t\seqar s = t }{}
157 88 adas
\end{array}
158 88 adas
\\
159 88 adas
\vlinf{\surj}{}{\word (t) \seqar t = \epsilon \laor \exists y^\word . t = \succ_0 y \laor \exists y^\word . t = \succ_1 y }{}
160 88 adas
\qquad
161 88 adas
\vlinf{\wordcntr}{}{\word(t) \seqar \word(t) \land \word(t) }{}
162 88 adas
\end{array}
163 34 adas
\]
164 88 adas
%\[
165 88 adas
%\vlinf{}{}{\seqar \word (\epsilon)}{}
166 88 adas
%\quad
167 88 adas
%\vlinf{}{}{\word(t) \seqar \word(\succ_0 t)}{}
168 88 adas
%\quad
169 88 adas
%\vlinf{}{}{\word(t) \seqar \word(\succ_1 t)}{}
170 88 adas
%\qquad \qquad
171 88 adas
%\vlinf{}{}{\word(t) \seqar \word(t) \land \word(t) }{}
172 88 adas
%\]
173 88 adas
%\[
174 88 adas
%\vlinf{}{}{ \word (t)  , \epsilon = \succ_0 t \seqar }{}
175 88 adas
%\quad
176 88 adas
%\vlinf{}{}{ \word (t)  , \epsilon = \succ_1 t \seqar }{}
177 88 adas
%\quad
178 88 adas
%\vlinf{}{}{\word (s) , \word (t)  , \succ_0 s = \succ_0 t\seqar s = t }{}
179 88 adas
%\quad
180 88 adas
%\vlinf{}{}{\word (s) , \word (t)  , \succ_1 s = \succ_1 t\seqar s = t }{}
181 88 adas
%\]
182 88 adas
%\[
183 88 adas
%\vlinf{}{}{\word(t), \succ_0 t = \succ_1 t \seqar}{}
184 88 adas
%\quad
185 88 adas
%\vlinf{}{}{\word (t) \seqar t = \epsilon \laor \exists y^\word . t = \succ_0 y \laor \exists y^\word . t = \succ_1 y }{}
186 88 adas
%\]
187 88 adas
%\vspace{1em}
188 54 adas
and $\ind$ is equivalent to,
189 120 adas
\begin{equation}
190 120 adas
\label{eqn:ind-rule}
191 109 adas
\small
192 88 adas
\vliinf{\ind}{}{ !\word(t) , !\Gamma , A(\epsilon) \seqar A(t), ?\Delta }{ !\word(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta }{ !\word(a) , !\Gamma, A(a) \seqar A(\succ_1 a) , ?\Delta  }
193 120 adas
\end{equation}
194 88 adas
where, in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\ind$ rule.
195 54 adas
\end{proposition}
196 34 adas
197 88 adas
Note, in particular, that since this system of rules is closed under substitution of terms for free variables, free-cut elimination, Thm.~\ref{thm:free-cut-elim}, applies.
198 34 adas
199 39 adas
200 120 adas
When converting from a $\ind$ axiom instance to a rule instance (or vice-versa) the induction formula remains the same. For this reason when we consider theories that impose logical restrictions on induction we can use either interchangeably.
201 43 adas
202 73 adas
\begin{remark}
203 88 adas
%\anupam{Mention that two induction rules are not the same. This is crucial in, e.g.\ the completeness section for the case of PRN.}
204 120 adas
Usually the induction axiom is also equivalent to a formulation with a designated premise for the base case:
205 120 adas
\begin{equation}
206 120 adas
\label{eqn:ind-rul-base-prem}
207 120 adas
\vliiinf{}{}{ !\word(t) , !\Gamma  \seqar A(t), ?\Delta }{!\Gamma \seqar A(\epsilon)}{ !\word(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta }{ !\word(a) , !\Gamma, A(a) \seqar A(\succ_1 a) , ?\Delta  }
208 120 adas
\end{equation}
209 120 adas
However,
210 120 adas
%but
211 120 adas
this is not true in the linear logic setting since the proof that \eqref{eqn:ind-rul-base-prem} simulates \eqref{eqn:ind-rule} above relies on contraction on the formula $A(\epsilon)$, which is not in general available. Therefore \eqref{eqn:ind-rul-base-prem} is somewhat weaker than \eqref{eqn:ind-rule}, and is in fact equivalent to a version of the induction axiom with $!A(\epsilon)$ in place of $A(\epsilon)$. This distinction turns out to be crucial in Sect.~\ref{sect:bc-convergence}, namely when proving the convergence of functions defined by predicative recursion on notation.
212 73 adas
\end{remark}
213 73 adas
214 54 adas
%
215 54 adas
%\subsection{Equivalent rule systems}
216 54 adas
%Instead of weakening and induction axioms, we consider the following rules, which are provably equivalent:
217 54 adas
%
218 54 adas
%\[
219 54 adas
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
220 54 adas
%\quad
221 54 adas
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta}
222 54 adas
%\quad
223 54 adas
%\vliinf{\pind}{}{ !N(t) , !\Gamma , A(\epsilon) \seqar A(t), ?\Delta }{ !N(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta }{ !N(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta  }
224 54 adas
%\]
225 54 adas
%
226 54 adas
%\todo{provable equivalence, if necessary.}
227 54 adas
%
228 54 adas
%The inclusion of the first two rules places us in an \emph{affine} setting, whereas the induction rule allows better proof theoretic manipulation.
229 54 adas
%
230 54 adas
%Finally, for each universally quantified axiom, we consider instead the schema of initial rules with unbound terms in place of universally quantified variables, again for proof theoretic reasons:
231 54 adas
%\[
232 54 adas
%\vlinf{\natcntr}{}{\nat(t) \seqar \nat(t) \land \nat(t) }{}
233 54 adas
%\quad
234 54 adas
%\vlinf{\nat_\epsilon}{}{\seqar \nat (\epsilon)}{}
235 54 adas
%\quad
236 54 adas
%\vlinf{\nat_0}{}{\nat(t) \seqar \nat(\succ_0 t)}{}
237 54 adas
%\quad
238 54 adas
%\vlinf{\nat_1}{}{\nat(t) \seqar \nat(\succ_1 t)}{}
239 54 adas
%\]
240 54 adas
%\[
241 54 adas
%\vlinf{\epsilon^0}{}{ \nat (t)  , \epsilon = \succ_0 t \seqar }{}
242 54 adas
%\quad
243 54 adas
%\vlinf{\epsilon^1}{}{ \nat (t)  , \epsilon = \succ_1 t \seqar }{}
244 54 adas
%\quad
245 54 adas
%\vlinf{\succ_0}{}{\nat (s) , \nat (t)  , \succ_0 s = \succ_0 t\seqar s = t }{}
246 54 adas
%\quad
247 54 adas
%\vlinf{\succ_1}{}{\nat (s) , \nat (t)  , \succ_1 s = \succ_1 t\seqar s = t }{}
248 54 adas
%\]
249 54 adas
%\[
250 54 adas
%\vlinf{\inj}{}{\nat(t), \succ_0 t = \succ_1 t \seqar}{}
251 54 adas
%\quad
252 54 adas
%\vlinf{\surj}{}{\nat (t) \seqar t = \epsilon , \exists y^\nat . t = \succ_0 y , \exists y^\nat . t = \succ_1 y }{}
253 54 adas
%\]
254 54 adas
%%in place of their corresponding axioms.
255 54 adas
%
256 54 adas
%%\todo{in existential above, is there a prenexing problem?}
257 54 adas
%
258 54 adas
%
259 54 adas
%\anupam{
260 54 adas
%NEW INDUCTION STEP:
261 54 adas
%\[
262 54 adas
%\vliiinf{\pind}{}{!\Gamma, !\nat(t) , \nat (\vec x) \seqar A(t, \vec x) }{!\Gamma , \nat (\vec x) \seqar A(\epsilon, \vec x) }{ !\Gamma, !\nat (a) , \nat (\vec x) , A(a, \vec x) \seqar A(\succ_i a, \vec x) }{!\Gamma, !\nat (a) , \nat (\vec x) , A(a, \vec x) \seqar A(\succ_i a, \vec x)}
263 54 adas
%\]
264 54 adas
%
265 54 adas
%Need to examine strength of this: somewhat weaker since needs actual premiss for base case (only significant because of linear logic), but somewhat stronger because of use of $\nat(\vec x)$ on the left in context.
266 54 adas
%}
267 33 adas
268 54 adas
269 60 adas
\subsection{Provably convergent functions}
270 88 adas
%
271 88 adas
%\anupam{Herbrand-G\"odel equational programs from Kle52, cited in Lei94b.}
272 88 adas
%
273 88 adas
%\anupam{`coherent' programs, defined by Leivant. = consistent so has a model.}
274 54 adas
275 110 adas
As in the work of Bellantoni and Hofmann \cite{BelHof:02} and Leivant before \cite{Leivant94:found-delin-ptime}, our model of computation is that of Herbrand-G\"odel style \emph{equational specifications}. These are expressive enough to define every partial recursive function, which is the reason why we also need the $\word$ predicate to have a meaningful notion of `provably convergent function'.
276 83 adas
277 60 adas
\begin{definition}
278 60 adas
	[Equational specifications and convergence]
279 88 adas
	An \emph{equational specification} (ES) is a set of equations between terms. We say that an ES is \emph{coherent} if the equality between any two distinct ground terms cannot be proved by equational logic.
280 88 adas
%	\footnote{This is the quantifier-free fragment of first-order logic with equality and no other predicate symbols.}
281 60 adas
282 60 adas
	The \emph{convergence statement} $\conv (f , \eqspec)$ for an equational specification $\eqspec$ and a function symbol $f$ (that occurs in $\eqspec$) is the following formula:
283 60 adas
	\[
284 60 adas
	\bigotimes_{A \in \eqspec} ! \forall \vec x . A
285 60 adas
	\ \limp \
286 89 adas
	\forall \vec x^{! \word} .  \word (f (\vec x) )
287 60 adas
	\]
288 60 adas
	\end{definition}
289 64 adas
290 64 adas
291 110 adas
The notion of coherence appeared in \cite{Leivant94:found-delin-ptime} and it is important to prevent a convergence statement from being a vacuous implication. In this work we will typically consider only coherent ESs, relying on the following result which is also essentially in \cite{Leivant94:found-delin-ptime}:
292 64 adas
\begin{proposition}
293 64 adas
	\label{prop:eq-spec-model}
294 88 adas
%	For every equational specification $\eqspec$, its universal closure has a model.
295 121 adas
The universal closure of a coherent ES $\eqspec$ has a model satisfying $\basic + \ind$.
296 64 adas
\end{proposition}
297 88 adas
298 110 adas
%\begin{proof}
299 110 adas
%%\todo{ take $\Word \cup \{\bot\}$ or use completeness? Omit if no time. }
300 110 adas
%Consider the standard model $\Word $ extended by an element $\infty$ with $\succ_0 \infty = \succ_1 \infty = \infty$. Setting $\word = \Word$ means this model satisfies $\basic$. Now, for each function symbol $f$, define $f(\sigma) = \tau$ for every $\sigma, \tau \in \Word$ for which this equation is forced by $\eqspec$. Otherwise define $f(\sigma) = f(\infty) = \infty$.
301 110 adas
%\todo{replace with argument using completeness.}
302 110 adas
%\end{proof}
303 60 adas
304 60 adas
	One issue is that a convergence statement contains universal quantifiers, which is problematic for the extraction of functions by the witness function method later on.
305 60 adas
%	\footnote{Intuitively universal quantifiers can be interpreted by type 1 functions. From here, in an intuitionistic setting, a $\forall$-right step can be directly realised, but in the classical setting the presence of side-formulae on the right can cause issues for constructivity.}
306 60 adas
	We avoid this problem by appealing to the deduction theorem and further invertibility arguments:
307 60 adas
308 60 adas
309 110 adas
	Let us write $\closure{\eqspec}$ for the closure of a specification $\eqspec$ under substitution of terms for free variables.
310 60 adas
311 64 adas
	\begin{lemma}
312 64 adas
		\label{lemma:spec-norm-form}
313 89 adas
	A system $\system$ proves $\conv (f , \eqspec)$ if and only if $\system \cup \closure{\eqspec}$ proves $!\word (\vec a) \seqar \word ( f (\vec a) )$.
314 64 adas
	\end{lemma}
315 91 adas
	\begin{proof}[Proof sketch]
316 91 adas
		By deduction, Thm.~\ref{thm:deduction}, and invertibility arguments.
317 60 adas
	\end{proof}
318 60 adas
319 88 adas
	Notice that the initial rules from $ \closure{\eqspec}$ are also closed under term substitution, and so compatible with free-cut elimination, and that $\closure{\eqspec}$ and $\word (\vec a) \seqar \word ( f (\vec a) )$ are free of negation and universal quantifiers.
320 60 adas
321 60 adas
322 57 adas
\subsection{$\word$-guarded quantifiers, rules and cut-reduction cases}
323 110 adas
We consider a quantifier hierarchy here analogous to the arithmetical hierarchy, where each class is closed under positive multiplicative operations. In the scope of this work we are only concerned with the first level:
324 33 adas
325 88 adas
%We now introduce a quantifier hierarchy of formulae so we can identify the theories that we will be concerned with for the remainder of this article.
326 88 adas
%
327 88 adas
%
328 33 adas
\begin{definition}
329 110 adas
%[Quantifier hierarchy]
330 110 adas
	We define $\sigzer $ as the class of multiplicative formulae that are free of quantifiers where $\word$ occurs positively.\footnote{Since our proof system is in De Morgan normal form, this is equivalent to saying that there is no occurrence of $\word^\bot$.}
331 110 adas
	The class $\sigone$ is the closure of $\sigzer$ by $\exists$, $\lor$ and $\land$.
332 110 adas
%	For $i> 0$ we define $\Sigma^\word_i$ and $\Pi^\word_i$ as follows:
333 110 adas
%	\begin{itemize}
334 110 adas
%		\item If $A \in \Sigma^\word_{i-1} \cup \Pi^\word_{i-1}$ then $A \in \Sigma^\word_i$ and $A \in \Pi^\word_i$.
335 110 adas
%		\item If $A \in \Sigma^\word_i$ then $\exists x^\word . A \in \Sigma^\word_i$.
336 110 adas
%		\item If $A \in \Pi^\word_i$ then $\forall x^\word . A \in \Pi^\word_i$.
337 110 adas
%		\item If $A,B \in \Sigma^\word_i$ then $A \lor B$ and $A\land B \in \Sigma^\word_i$.
338 110 adas
%		\item If $A,B \in \Pi^\word_i$ then $A \lor B$ and $A\land B \in \Pi^\word_i$.
339 110 adas
%	\end{itemize}
340 110 adas
%	We add $+$ in superscript to a class to restrict it to formulae where $\word$ occurs in only positive context.
341 33 adas
\end{definition}
342 33 adas
343 88 adas
For the remainder of this article we mainly work with the theory $\arith$, i.e.\ $\basic + \cax{\sigone}{\ind}$.
344 88 adas
345 110 adas
%\vspace{1em}
346 88 adas
347 116 pbaillot
It will be useful for us to work with proofs using the `guarded' quantifiers $\forall x^\word$ and $\exists x^\word$ in place of their unguarded counterparts, in particular to carry out the argument in Sect.~\ref{sect:wfm}.
348 110 adas
%To this end we introduce rules for these guarded quantifiers and show that they are compatible with free-cut elimination.
349 110 adas
%
350 65 pbaillot
%For the quantifiers $\exists x^N $ and $\forall x^N$ we introduce the following rules, which are compatible with free-cut elimination:
351 88 adas
%For the quantifiers $\exists x^\word $ and $\forall x^\word$ we
352 110 adas
Therefore we define the following rules, which are already derivable:
353 33 adas
\[
354 108 adas
%\begin{array}{cc}
355 108 adas
%\vlinf{}{}{\Gamma \seqar \Delta, \forall x^\word . A(x)}{\Gamma, \word(a) \seqar \Delta , A(a)}
356 108 adas
%\quad & \quad
357 108 adas
%\vlinf{}{}{\Gamma, \word(t),\forall x^\word A(x) \seqar \Delta}{\Gamma,  A(t) \seqar \Delta}
358 108 adas
%\\
359 108 adas
%\noalign{\bigskip}
360 108 adas
%\vlinf{}{}{\Gamma , \exists x^\word A(x) \seqar \Delta}{\Gamma, \word(a), A(a) \seqar \Delta}
361 108 adas
%\quad &\quad
362 108 adas
%\vlinf{}{}{\Gamma, \word(t) \seqar \Delta , \exists x^\word . A(x)}{\Gamma  \seqar \Delta, A(t)}
363 108 adas
%\end{array}
364 65 pbaillot
\vlinf{}{}{\Gamma \seqar \Delta, \forall x^\word . A(x)}{\Gamma, \word(a) \seqar \Delta , A(a)}
365 108 adas
\quad
366 65 pbaillot
\vlinf{}{}{\Gamma, \word(t),\forall x^\word A(x) \seqar \Delta}{\Gamma,  A(t) \seqar \Delta}
367 108 adas
\quad
368 65 pbaillot
\vlinf{}{}{\Gamma , \exists x^\word A(x) \seqar \Delta}{\Gamma, \word(a), A(a) \seqar \Delta}
369 108 adas
\quad
370 65 pbaillot
\vlinf{}{}{\Gamma, \word(t) \seqar \Delta , \exists x^\word . A(x)}{\Gamma  \seqar \Delta, A(t)}
371 33 adas
\]
372 57 adas
373 65 pbaillot
%\begin{proposition}
374 65 pbaillot
%	Any principal cut between the quantifier rules above and a logical step is reducible.
375 65 pbaillot
%	\end{proposition}
376 110 adas
377 110 adas
We now show that these rules are compatible with free-cut elimination.
378 110 adas
379 70 pbaillot
\begin{proposition}\label{prop:logicalstepguardedquantifer}
380 65 pbaillot
	Any cut between the principal formula of a quantifier rule above and the principal formula of  a logical step is reducible.
381 57 adas
	\end{proposition}
382 68 pbaillot
\begin{proof}
383 110 adas
 For a cut on $\forall x^\word . A(x)$, the reduction is obtained by performing successively the two reduction steps for the $\forall$ and $\limp$ connectives. The case of $\exists x^\word A(x)$ is similar.
384 68 pbaillot
\end{proof}
385 57 adas
386 68 pbaillot
		\begin{corollary}
387 57 adas
		[Free-cut elimination for guarded quantifiers]
388 110 adas
		\label{cor:free-cut-elim-guarded-quants}
389 110 adas
		  Given a system  $\system$, any  $\system$-proof $\pi$ using $\exists x^\word $ and $\forall x^\word$  rules can be transformed into free-cut free form.
390 68 pbaillot
\end{corollary}
391 110 adas
%\begin{proof}
392 110 adas
%  First translate the proof $\pi$ into the proof $\pi_0$ where all guarded quantifiers rules have been replaced by their derivation, and say that two rule instances in $\pi_0$ are \textit{siblings} if they come from the same derivation of a guarded quantifier rule. So in $\pi_0$ any two sibling rules are consecutive. Now observe that in the free-cut elimination procedure:
393 110 adas
%  \begin{itemize}
394 110 adas
%  \item when we do a commutation step of a cut with a $\forall$ (resp. $\exists$ rule) that has a sibling, we can follow it by another commutation of cut with its sibling,
395 110 adas
%  \item when we do a logical cut-elimination step on a $\forall$ (resp. $\exists$ rule) that has a sibling, we can follow it by a logical cut-elimination step on its sibling, as illustrated by Prop. \ref{prop:logicalstepguardedquantifer}.
396 110 adas
%  \end{itemize}
397 110 adas
%  In this way sibling rules remain consecutive in the proof-tree throughout the reduction, and the procedure transforms the proof into one with only anchored cuts.
398 110 adas
%\end{proof}
399 110 adas
400 121 adas
As a consequence of this Corollary observe that any $I\Sigma^{\word^+}_{1}$-proof can be transformed into a proof which is free-cut free and whose formulas contain only $\exists x^\word$ quantifiers.