Révision 247 CSL17/soundness.tex
soundness.tex (revision 247) | ||
---|---|---|
48 | 48 |
|
49 | 49 |
|
50 | 50 |
\begin{proposition} |
51 |
Given a $\Sigma^\safe_i$ formula $A$ and compatible sorting $(\vec u; \vec x)$ of its variables, there is a $\mubci{i-1}$ program $\charfn{\vec u ;\vec x}{A} (l, \vec u ; \vec x)$ computing the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$.
|
|
51 |
Given a $\Sigma^\safe_i$ formula $A$ and compatible sorting $(\vec u; \vec x)$ of its variables, there is a $\mubci{i}$ program $\charfn{\vec u ;\vec x}{A} (l, \vec u ; \vec x)$ computing the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$. |
|
52 | 52 |
\end{proposition} |
53 | 53 |
|
54 | 54 |
|
55 | 55 |
We will use the programs $\charfn{}{}$ in the witness functions we define below. |
56 |
Let us write $\charfn{}{i}$ to denote the class of functions $\charfn{}{A}$ for $A \in \Pi^\safe_{i-1}$.
|
|
56 |
Let us write $\charfn{}{i}$ to denote the class of functions $\charfn{}{A}$ for $A \in \Sigma^\safe_{i}$.
|
|
57 | 57 |
For the notion of bounding polynomial below we are a little informal with bounds, using `big-oh' notation, since it will suffice just to be `sufficiently large'. |
58 | 58 |
Notice that, while we refer to $b_A(l), p(l)$ etc.\ below as a `polynomial', we really mean a \emph{quasipolynomial} (which may also contain $\smsh$), i.e.\ a polynomial in the \emph{length} of $l$, as a slight abuse of notation. |
59 | 59 |
|
60 | 60 |
|
61 | 61 |
\begin{definition} |
62 | 62 |
[Length bounded witness function] |
63 |
For a $\Sigma^\safe_{i}$ formula $A$ with a compatible sorting $(\vec u ; \vec x)$, we define the \emph{length-bounded witness function} $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w)$ in $\bc (\charfn{}{i})$ and its \emph{bounding polynomial} $b_A (l)$ as follows: |
|
63 |
For a $\Sigma^\safe_{i}$ formula $A$ with a compatible sorting $(\vec u ; \vec x)$, we define the \emph{length-bounded witness function} $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w)$ in $\bc (\charfn{}{i-1})$ and its \emph{bounding polynomial} $b_A (l)$ as follows:
|
|
64 | 64 |
\begin{itemize} |
65 | 65 |
\item If $A$ is $\Pi^\safe_{i-1}$ then $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) \dfn \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x )$ and we set $b_A (l) = 1$. |
66 | 66 |
\item If $A$ is $B \cor C$ then we may set $b_A = O(b_B + b_C)$ and define $ \wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) \dfn \orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) ) )$. |
Formats disponibles : Unified diff