Statistiques
| Révision :

root / CSL17 / DICE2017_TALK / unboundedArithmetic.tex @ 247

Historique | Voir | Annoter | Télécharger (15,98 ko)

1 188 pbaillot
2 188 pbaillot
%\documentclass[pdf, pleasingblue,slideColor,colorBG]{prosper}
3 188 pbaillot
\documentclass{beamer}
4 188 pbaillot
\usepackage{amsfonts,latexsym,amssymb, amsmath}
5 188 pbaillot
\usepackage{stmaryrd}
6 188 pbaillot
\usepackage{graphicx}
7 188 pbaillot
\usepackage{eepic}
8 188 pbaillot
\usepackage[dvips]{epsfig}
9 188 pbaillot
%\usepackage{psfig}
10 188 pbaillot
%\input head.tex
11 188 pbaillot
\usepackage{proof,bussproofs}
12 188 pbaillot
%\usepackage{ desseins_s}
13 188 pbaillot
14 188 pbaillot
15 188 pbaillot
%\usepackage{microtype}%if unwanted, comment out or use option "draft"
16 188 pbaillot
%\usepackage[dvipsnames]{xcolor}
17 188 pbaillot
18 188 pbaillot
%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory
19 188 pbaillot
20 188 pbaillot
%\bibliographystyle{plainurl}% the recommended bibstyle
21 188 pbaillot
22 188 pbaillot
%\usepackage[lutzsyntax]{virginialake}
23 188 pbaillot
\input{ph-macros}
24 188 pbaillot
25 188 pbaillot
26 188 pbaillot
27 188 pbaillot
\setbeamercolor{block title}{bg=blue!10}
28 188 pbaillot
\setbeamercolor{block body}{bg=blue!10}
29 188 pbaillot
\definecolor{monred}{HTML}{9D0909}
30 188 pbaillot
%\definecolor{monbleu}{RVB}{0,0,1}
31 188 pbaillot
 \def\red#1{\color{red}{#1}}
32 188 pbaillot
 \def\blue#1{\color{blue}{#1}}
33 188 pbaillot
 \def\green#1{\color{green}{#1}}
34 188 pbaillot
\def\black{}
35 188 pbaillot
\def\BA#1{\color{red}{#1}}
36 188 pbaillot
 \def\ICC#1{\color{blue}{#1}}
37 188 pbaillot
38 188 pbaillot
39 188 pbaillot
%%%%%%%%%%%%%ENVIRONMENTS AND THEOREM-STYLES %%%%%%%%%%%%%%%%%%
40 188 pbaillot
%\def\un#1{\underline{#1}}
41 188 pbaillot
%\def\point#1{{\bf #1.}}
42 188 pbaillot
%%\newcommand{\etq}[1]{\mbox{\scriptsize\bf #1}}
43 188 pbaillot
%\newcommand{\etq}[1]{\mbox{{\bf #1}}}
44 188 pbaillot
%\newcommand{\Rulone}[1]{%
45 188 pbaillot
%          \begin{center}
46 188 pbaillot
%           \makebox[12cm]{\hspace*{\fill}
47 188 pbaillot
%                 \begin{minipage}[c]{6cm} #1 \end{minipage} \hspace*{\fill}
48 188 pbaillot
%                }
49 188 pbaillot
%          \end{center}
50 188 pbaillot
%  }
51 188 pbaillot
%
52 188 pbaillot
%\newcommand{\centra}[1]{\begin{center} #1 \end{center}}
53 188 pbaillot
%
54 188 pbaillot
%\newcommand{\Rultwo}[2]{%
55 188 pbaillot
%          \begin{center}
56 188 pbaillot
%           \makebox[12cm]{
57 188 pbaillot
%         \makebox[6cm]{\begin{minipage}[c]{6cm} #1 \end{minipage}} \hspace{20pt}
58 188 pbaillot
%         \makebox[6cm]{\begin{minipage}[c]{6cm} #2 \end{minipage}}
59 188 pbaillot
%                }
60 188 pbaillot
%          \end{center}
61 188 pbaillot
%  }
62 188 pbaillot
%\newcounter{ex}
63 188 pbaillot
%%\newtheorem{example}[ex]{Example}
64 188 pbaillot
%
65 188 pbaillot
%
66 188 pbaillot
%\def\para#1{\paragraph{#1}}
67 188 pbaillot
%\newtheorem{theo}{Theorem}
68 188 pbaillot
%\newtheorem{de}{Definition}
69 188 pbaillot
%\newtheorem{prop}[theo]{Proposition}
70 188 pbaillot
%\newtheorem{lem}[theo]{Lemma}
71 188 pbaillot
%\newtheorem{Cor}[theo]{Corollary}
72 188 pbaillot
%\newtheorem{remark}[theo]{Remark}
73 188 pbaillot
%\newcounter{pb}
74 188 pbaillot
%\newtheorem{problem}[pb]{Problem}
75 188 pbaillot
%\newenvironment{proof}{\noindent{\bfseries Proof :}}{\hbox{}\hfill$\Box$}
76 188 pbaillot
77 188 pbaillot
%---------------------
78 188 pbaillot
%% Definition of new colors
79 188 pbaillot
%\newrgbcolor{LemonChiffon}{1. 0.98 0.8}
80 188 pbaillot
%
81 188 pbaillot
%\newrgbcolor{LightBlue}{0.68 0.85 0.9}
82 188 pbaillot
%\newrgbcolor{Dgreen}{0  0.6 0.4}
83 188 pbaillot
%%\newrgbcolor{DBlue}{0  0 0.5}
84 188 pbaillot
%\newrgbcolor{DBlue}{0  0 0.6}
85 188 pbaillot
%\newrgbcolor{Dblue}{0  0 0.6}
86 188 pbaillot
%%----------------------
87 188 pbaillot
%%% MORE Color definitions
88 188 pbaillot
%\newrgbcolor{DarkGray}{.284 .210 .410}
89 188 pbaillot
%\newrgbcolor{Violet}{.2 .2  .9}
90 188 pbaillot
91 188 pbaillot
%---------------------
92 188 pbaillot
93 188 pbaillot
\mode<presentation>
94 188 pbaillot
{
95 188 pbaillot
  \usetheme{Warsaw}
96 188 pbaillot
  % or ...
97 188 pbaillot
98 188 pbaillot
  \setbeamercovered{transparent}
99 188 pbaillot
  % or whatever (possibly just delete it)
100 188 pbaillot
}
101 188 pbaillot
102 188 pbaillot
103 188 pbaillot
\title{Towards an Unbounded Implicit Arithmetic for\\
104 188 pbaillot
the Polynomial Hierarchy
105 188 pbaillot
}
106 188 pbaillot
107 188 pbaillot
\author{Patrick Baillot and Anupam Das}
108 191 pbaillot
\institute{CNRS / ENS Lyon\\
109 191 pbaillot
DICE-FOPARA 2017 workshop, Uppsala}
110 188 pbaillot
111 188 pbaillot
112 188 pbaillot
\begin{document}
113 188 pbaillot
\maketitle
114 188 pbaillot
115 188 pbaillot
116 188 pbaillot
\begin{frame}
117 188 pbaillot
  \frametitle{Introduction}
118 188 pbaillot
119 188 pbaillot
 2 cousin approaches to logical characterization of complexity classes:
120 188 pbaillot
121 188 pbaillot
\bigskip
122 188 pbaillot
123 188 pbaillot
 \begin{tabular}{l|l}
124 188 pbaillot
 \BA{Bounded arithmetic (86 -- )} & \ICC{Implicit computational complexity  (91 --)}\\
125 188 pbaillot
      & \ICC{(ICC)}\\
126 188 pbaillot
 \hline
127 188 pbaillot
 &\\
128 191 pbaillot
% & function algebras\\
129 191 pbaillot
% & types/proofs-as-programs\\
130 191 pbaillot
arithmetic & arithmetics / logics\\
131 188 pbaillot
 & \\
132 188 pbaillot
 large variety of & resource-free characterizations of\\
133 188 pbaillot
 complexity classes & complexity classes (e.g. ramification)\\
134 188 pbaillot
 &\\
135 191 pbaillot
 correspondence with & extensions to programming languages\\
136 188 pbaillot
 \textit{proof-complexity} &
137 188 pbaillot
 \end{tabular}
138 188 pbaillot
  \end{frame}
139 188 pbaillot
140 188 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
141 188 pbaillot
142 188 pbaillot
\begin{frame}
143 188 pbaillot
  \frametitle{Introduction}
144 188 pbaillot
145 188 pbaillot
$$  \mbox{"\textit{$f$ is provably total in system} XXX"} \Leftrightarrow \quad f \in \mbox{ complexity class YYY }$$
146 188 pbaillot
147 188 pbaillot
\bigskip
148 188 pbaillot
149 188 pbaillot
 \begin{tabular}{l|l}
150 188 pbaillot
 \BA{Bounded arithmetic}  \qquad \qquad & \ICC{Implicit computational complexity}\\
151 188 pbaillot
 \hline
152 188 pbaillot
 &\\
153 191 pbaillot
  Buss ($S_2$): & Leivant (intrinsic theories): \\
154 191 pbaillot
  $\forall x, {\exists y } . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\
155 188 pbaillot
  &\\
156 188 pbaillot
  FP, FPH & FP
157 188 pbaillot
  \end{tabular}
158 188 pbaillot
  \end{frame}
159 188 pbaillot
160 188 pbaillot
  %%%%%%%%%%%%%%%%%%%%%%%%%%%
161 188 pbaillot
162 188 pbaillot
\begin{frame}
163 188 pbaillot
  \frametitle{{A current limitation of ICC logics}}
164 188 pbaillot
165 188 pbaillot
 \begin{itemize}
166 188 pbaillot
\item fewer complexity classes characterized by {\ICC{ICC logics}} than by {\BA{bounded arithmetic}}
167 189 pbaillot
\item in particular, {\ICC{ICC logics}}  not so satisfactory for non-deterministic classes
168 188 pbaillot
169 188 pbaillot
e.g. NP, PH (polynomial hierarchy) \dots
170 188 pbaillot
171 188 pbaillot
 \end{itemize}
172 188 pbaillot
 \end{frame}
173 188 pbaillot
174 188 pbaillot
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
175 188 pbaillot
176 188 pbaillot
\begin{frame}
177 188 pbaillot
  \frametitle{Recap : the polynomial hierarchy}
178 188 pbaillot
179 188 pbaillot
 \begin{itemize}
180 191 pbaillot
\item  NP: polynomially checkable with polysize witness
181 191 pbaillot
182 191 pbaillot
$NP=\Sigma_1^P$ example: $k$-CLIQUE
183 191 pbaillot
184 191 pbaillot
$$\exists^{|s_1|\leq k } s_1, (|s_1|=k \cand \mbox{CLIQUE}(s_1,x))$$
185 191 pbaillot
\item  $\Sigma_2^P$ example: $k$-MAXCLIQUE
186 191 pbaillot
\end{itemize}
187 191 pbaillot
$$ \begin{array}{l}
188 191 pbaillot
 \exists^{|s_1|\leq k } s_1, \forall^{|s_2|\leq k+1 } s_2,\\
189 192 pbaillot
  (|s_1|=k \cand \mbox{CLIQUE}(s_1,x) \cand (s_1\subsetneq s_2 \rightarrow \neg  \mbox{CLIQUE}(s_2,x))   )
190 191 pbaillot
\end{array}
191 191 pbaillot
$$
192 191 pbaillot
\begin{itemize}
193 191 pbaillot
\item  $\Sigma_i^P$:
194 191 pbaillot
$$
195 191 pbaillot
 \exists^{|s_1|\leq P_1(x) } s_1, \forall^{|s_2|\leq P_2(x) } s_2, \dots  Q^{|s_i|\leq P_i(x) } s_i,
196 191 pbaillot
  \mbox{Pred}(\vec s, x)$$
197 191 pbaillot
  for Pred a Ptime predicate.
198 191 pbaillot
\end{itemize}
199 188 pbaillot
 \end{frame}
200 188 pbaillot
201 191 pbaillot
202 191 pbaillot
\begin{frame}
203 191 pbaillot
  \frametitle{Recap : the polynomial hierarchy}
204 191 pbaillot
205 191 pbaillot
 \begin{itemize}
206 191 pbaillot
\item polynomial hierarchy:
207 191 pbaillot
$$ \mbox{PH}= \cup_i \Sigma_i^P$$
208 191 pbaillot
\item functional version:
209 191 pbaillot
\begin{eqnarray*}
210 191 pbaillot
  \fphi{i} &=& \mbox{FP}^{\Sigma_{i-1}^P}\\
211 191 pbaillot
  \mbox{FPH} &=& \cup_i   \fphi{i}
212 191 pbaillot
  \end{eqnarray*}
213 191 pbaillot
  \end{itemize}
214 191 pbaillot
215 191 pbaillot
in particular:
216 191 pbaillot
217 191 pbaillot
 $\fphi{1}=\mbox{FP}, \qquad \fphi{2}=\mbox{FP}^{\mbox{NP}}$.
218 191 pbaillot
\end{frame}
219 188 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
220 188 pbaillot
221 188 pbaillot
\begin{frame}
222 188 pbaillot
  \frametitle{Our goal}
223 188 pbaillot
224 189 pbaillot
 design an {\ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH
225 188 pbaillot
226 188 pbaillot
 \medskip
227 188 pbaillot
228 188 pbaillot
 expected benefits:
229 188 pbaillot
 \begin{itemize}
230 188 pbaillot
\item   bridge  {\BA{bounded arithmetic}}  and {\ICC{ICC logics}}
231 189 pbaillot
\item enlarge the toolbox  of {\ICC{ICC logics}}, by exploring the power of quantification (under-investigated in ICC)
232 188 pbaillot
\end{itemize}
233 188 pbaillot
 \end{frame}
234 188 pbaillot
235 188 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
236 188 pbaillot
237 188 pbaillot
\begin{frame}
238 188 pbaillot
  \frametitle{Methodology}
239 188 pbaillot
240 188 pbaillot
 We want to use:
241 188 pbaillot
 \begin{itemize}
242 189 pbaillot
\item {\ICC{ramification}} (distinction safe / normal arguments) from   {\ICC{ICC}}
243 191 pbaillot
   \item induction calibrated by logical complexity (quantifiers), from  {\BA{bounded arithmetic}}
244 191 pbaillot
%   \item our \textit{key idea}:
245 191 pbaillot
%
246 191 pbaillot
%   trade{ \BA{bounded quantifiers $\forall x \leq t$,  $\exists x \leq t$ of bounded arithmetic}}
247 191 pbaillot
%
248 191 pbaillot
%   for {\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$,  $\exists^{\safe} x$ in a ramified arithmetic}}
249 188 pbaillot
\end{itemize}
250 188 pbaillot
 \end{frame}
251 188 pbaillot
252 188 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
253 188 pbaillot
254 188 pbaillot
\begin{frame}
255 190 pbaillot
  \frametitle{Ramification}
256 190 pbaillot
257 190 pbaillot
 \begin{itemize}
258 190 pbaillot
\item   ramification, a.k.a. tiering, safe recursion
259 190 pbaillot
\item distinguish two levels of data-types:
260 190 pbaillot
261 190 pbaillot
${\red{N_1}}$ (\textit{normal}) integers can trigger induction/recursion
262 190 pbaillot
263 190 pbaillot
${{N_0}}$ (\textit{safe})  integers cannot; they can just be finitely explored
264 191 pbaillot
265 191 pbaillot
%\smallskip
266 191 pbaillot
267 191 pbaillot
\item BC function algebra (Bellantoni-Cook 92):
268 191 pbaillot
269 191 pbaillot
 $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
270 191 pbaillot
271 191 pbaillot
 safe recursion scheme:
272 190 pbaillot
$$ f({\red{\succ{i} u, \vec v}}{\textbf ;} \vec x)=F_i ({\red{u,\vec v}}{\textbf ; }f(u, \vec v;\vec x), \vec x)$$
273 190 pbaillot
\item function algebra for FP: Bellantoni-Cook 92, Leivant 93
274 190 pbaillot
275 191 pbaillot
          logic for FP: Leivant 95, Cantini 02, Bellantoni-Hofmann 02
276 190 pbaillot
\end{itemize}
277 190 pbaillot
 \end{frame}
278 191 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
279 190 pbaillot
280 191 pbaillot
\begin{frame}
281 191 pbaillot
  \frametitle{Methodology: our key idea}
282 191 pbaillot
283 191 pbaillot
% We want to use:
284 191 pbaillot
 \begin{itemize}
285 191 pbaillot
%\item {\ICC{ramification}} (distinction safe / normal arguments) from   {\ICC{ICC}}
286 191 pbaillot
%   \item induction calibrated by logical complexity (quantifiers), from  {\BA{bounded arithmetic}}
287 191 pbaillot
%   \item our \textit{key idea}:
288 191 pbaillot
289 191 pbaillot
\item   trade
290 191 pbaillot
291 191 pbaillot
    { \BA{bounded quantifiers $\forall x \leq t$,  $\exists x \leq t$ of bounded arithmetic}}
292 191 pbaillot
293 191 pbaillot
   for
294 191 pbaillot
295 191 pbaillot
    {\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$,  $\exists^{\safe} x$ in a ramified arithmetic}}
296 191 pbaillot
\item calibrate the arithmetic by considering the number of ({\ICC{safe}}) quantifier alternations in induction formulas $A$, as in
297 191 pbaillot
{\BA{bounded arithmetic}}
298 191 pbaillot
\end{itemize}
299 191 pbaillot
 \end{frame}
300 191 pbaillot
301 190 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
302 190 pbaillot
\begin{frame}
303 189 pbaillot
  \frametitle{Ingredients for a logical characterization}
304 188 pbaillot
305 188 pbaillot
 \begin{itemize}
306 189 pbaillot
\item  choose a way to \textit{specify} functions
307 189 pbaillot
\item choose a logic:
308 189 pbaillot
309 189 pbaillot
logical system + axioms, induction scheme
310 189 pbaillot
\item prove soundness:
311 189 pbaillot
312 189 pbaillot
realizability-like argument, with a well-chosen \textit{target language}
313 189 pbaillot
\item prove completeness
314 189 pbaillot
\end{itemize}
315 188 pbaillot
 \end{frame}
316 188 pbaillot
317 188 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
318 188 pbaillot
319 188 pbaillot
\begin{frame}
320 189 pbaillot
  \frametitle{Specifying the functions}
321 188 pbaillot
322 191 pbaillot
 Various approaches at hand to specify a function $f$ in a logic:
323 188 pbaillot
 \begin{itemize}
324 189 pbaillot
\item   {\BA{formula specification}} (bounded arithmetic):
325 188 pbaillot
326 189 pbaillot
a formula $A_f$ defines the graph of $f$
327 189 pbaillot
\item {\ICC{equational specification}} (Leivant: intrinsic theories)
328 188 pbaillot
329 189 pbaillot
conjunction of first-order equations defining $f$
330 188 pbaillot
331 191 pbaillot
\item combinatory terms (applicative theories: Feferman, Cantini, Kahle-Oitavem \dots)
332 188 pbaillot
333 191 pbaillot
terms of combinatory algebra computing $f$
334 189 pbaillot
\item \dots
335 188 pbaillot
336 188 pbaillot
\end{itemize}
337 189 pbaillot
 \end{frame}
338 188 pbaillot
339 189 pbaillot
\begin{frame}
340 189 pbaillot
  \frametitle{Our logical system}
341 188 pbaillot
342 191 pbaillot
 Ramified classical arithmetic (\RC):
343 189 pbaillot
 \begin{itemize}
344 189 pbaillot
\item  1st-order classical logic \dots
345 189 pbaillot
\item \dots over the language:
346 188 pbaillot
\begin{itemize}
347 189 pbaillot
 \item functions and constants: $0, \succ, +, \cdot, \smsh, |.|$
348 189 pbaillot
 \item predicates: $\leq, {\ICC{N_0}},  {\ICC{N_1}}$
349 188 pbaillot
\end{itemize}
350 189 pbaillot
\item with axioms:
351 189 pbaillot
 \begin{itemize}
352 191 pbaillot
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_2$, but sorted)
353 188 pbaillot
\smallskip
354 188 pbaillot
355 189 pbaillot
notation:
356 188 pbaillot
357 189 pbaillot
$\begin{array}{lcl}
358 189 pbaillot
\succ{0}x &:=& 2\cdot x\\
359 189 pbaillot
\succ{1}x & :=& \succ{}(2\cdot x)
360 188 pbaillot
\end{array}
361 189 pbaillot
 $
362 189 pbaillot
      \item polynomial induction IND:
363 188 pbaillot
 \end{itemize}
364 188 pbaillot
 \end{itemize}
365 189 pbaillot
 {\small $$    A(0)
366 189 pbaillot
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{0} x) ) )
367 189 pbaillot
\rightarrow  (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{1} x) ) )
368 189 pbaillot
\rightarrow  \forall x^{\normal} . A(x) $$
369 189 pbaillot
   }
370 189 pbaillot
371 189 pbaillot
   Define all that within a sequent calculus system.
372 189 pbaillot
373 189 pbaillot
  $\mathcal{C}$-\RC\  is \RC\ with IND restricted to formulas $A$ belonging to the class  $\mathcal{C}$ of formulas.
374 189 pbaillot
 \end{frame}
375 188 pbaillot
376 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
377 188 pbaillot
378 189 pbaillot
\begin{frame}
379 189 pbaillot
  \frametitle{Classification of quantifications}
380 188 pbaillot
381 191 pbaillot
% Write $Q$ for $\forall$ or $\exists$.
382 189 pbaillot
 \begin{itemize}
383 191 pbaillot
\item   safe ($N_0$) quantifiers:
384 191 pbaillot
\begin{eqnarray*}
385 191 pbaillot
\forall^{N_0}x.A &:=& \forall x.(N_0(x) \rightarrow A)\\
386 191 pbaillot
\exists^{N_0}x.A &:=& \exists x.(N_0(x) \cand A)
387 191 pbaillot
\end{eqnarray*}
388 191 pbaillot
\item sharply bounded normal ($\normal$) quantifiers:
389 191 pbaillot
\begin{eqnarray*}
390 191 pbaillot
\forall^{N_1}x\leq |t| .A &:=& \forall x.(N_1(x) \rightarrow (x\leq |t|) \rightarrow A)\\
391 191 pbaillot
\exists^{N_1}x\leq |t| .A &:=& \exists x.(N_1(x) \cand(x\leq |t|) \cand A)
392 191 pbaillot
\end{eqnarray*}
393 191 pbaillot
%$$Q^{N_i}x\leq |t|.\; A := Qx.(N_i(x) \rightarrow (x\leq |t|) \rightarrow A)$$
394 188 pbaillot
\end{itemize}
395 189 pbaillot
 \end{frame}
396 188 pbaillot
397 189 pbaillot
%%%%%%%%%%%
398 189 pbaillot
\begin{frame}
399 189 pbaillot
  \frametitle{Quantifier hierarchy}
400 188 pbaillot
401 189 pbaillot
 We define:
402 189 pbaillot
 \begin{itemize}
403 189 pbaillot
\item $\Sigma^\safe_0 = \Pi^\safe_0 $= formulas with only sharply bounded quantifiers,
404 189 pbaillot
\item $\Sigma^\safe_{i+1}$= closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers,
405 189 pbaillot
\item  $\Pi^\safe_{i+1}$ = closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers,
406 189 pbaillot
\item $\Sigma^\safe= \cup_i \Sigma^\safe_i$.
407 188 pbaillot
\end{itemize}
408 188 pbaillot
\end{frame}
409 188 pbaillot
410 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
411 188 pbaillot
412 189 pbaillot
\begin{frame}
413 189 pbaillot
  \frametitle{Result and work-in-progress}
414 188 pbaillot
415 191 pbaillot
 \begin{claim}[Soundness]
416 189 pbaillot
  If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
417 191 pbaillot
 \end{claim}
418 188 pbaillot
419 191 pbaillot
  \begin{claim}[Completeness]
420 192 pbaillot
  If $f$ $f$ belongs to $\fphi{i}$ then $f$ is provably total in \RCi\ .
421 191 pbaillot
 \end{claim}
422 188 pbaillot
423 188 pbaillot
\end{frame}
424 188 pbaillot
425 191 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
426 191 pbaillot
427 191 pbaillot
\begin{frame}
428 191 pbaillot
  \frametitle{Proof idea for soundness: target language $\mu$BC}
429 191 pbaillot
430 191 pbaillot
 \begin{itemize}
431 191 pbaillot
\item   target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH
432 191 pbaillot
\item BC algebra:  $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
433 191 pbaillot
\begin{itemize}
434 191 pbaillot
  \item initial functions: $p$, $\pi^n_i$, \dots
435 191 pbaillot
  \item safe recursion
436 191 pbaillot
  \item safe composition
437 191 pbaillot
\end{itemize}
438 191 pbaillot
439 191 pbaillot
BC characterizes the class FP (Bellantoni-Cook 92).
440 191 pbaillot
%\item $\mu$BC: extends BC with \textit{predicative minimization}
441 191 pbaillot
%
442 191 pbaillot
%$f({\red{\vec u}}; \vec x):= \begin{cases}
443 191 pbaillot
% s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if  there exists such a $y$,} \\
444 191 pbaillot
%0  & \mbox{ otherwise,}
445 191 pbaillot
%\end{cases}
446 191 pbaillot
%$
447 191 pbaillot
%
448 191 pbaillot
% $\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization
449 191 pbaillot
\end{itemize}
450 191 pbaillot
 \end{frame}
451 191 pbaillot
452 191 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
453 191 pbaillot
454 191 pbaillot
\begin{frame}
455 191 pbaillot
  \frametitle{Proof idea for soundness: target language $\mu$BC}
456 191 pbaillot
457 191 pbaillot
 \begin{itemize}
458 191 pbaillot
%\item   target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH
459 191 pbaillot
%\item BC algebra:  $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
460 191 pbaillot
%\begin{itemize}
461 191 pbaillot
%  \item initial functions: $p$, $\pi^n_i$, \dots
462 191 pbaillot
%  \item safe recursion
463 191 pbaillot
%  \item safe composition
464 191 pbaillot
%\end{itemize}
465 191 pbaillot
%
466 191 pbaillot
%BC characterizes the class FP (Bellantoni-Cook 92).
467 191 pbaillot
\item $\mu$BC: extends BC with \textit{predicative minimization}
468 191 pbaillot
469 191 pbaillot
$f({\red{\vec u}}; \vec x):= \begin{cases}
470 191 pbaillot
 s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if  there exists such a $y$,} \\
471 191 pbaillot
0  & \mbox{ otherwise,}
472 191 pbaillot
\end{cases}
473 191 pbaillot
$
474 191 pbaillot
475 191 pbaillot
 $\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization
476 191 pbaillot
 \item one obtains
477 191 pbaillot
478 191 pbaillot
 \begin{theorem}[Bellantoni 92]
479 191 pbaillot
480 191 pbaillot
 The functions of $\mu$BC are exactly those of FPH.
481 191 pbaillot
482 191 pbaillot
 The functions of  $\mu \mbox{BC}^{\; i-1}$ are exactly those of $\fphi{i}$.
483 191 pbaillot
 \end{theorem}
484 191 pbaillot
\end{itemize}
485 191 pbaillot
 \end{frame}
486 191 pbaillot
487 191 pbaillot
488 191 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
489 191 pbaillot
490 191 pbaillot
\begin{frame}
491 191 pbaillot
  \frametitle{Proving soundness}
492 191 pbaillot
493 191 pbaillot
 Key intermediary property to prove:
494 191 pbaillot
 \begin{claim}
495 191 pbaillot
 If \RCi\ proves
496 191 pbaillot
 $$\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$$
497 191 pbaillot
  then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that
498 191 pbaillot
  $$\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x)).$$
499 191 pbaillot
\end{claim}
500 191 pbaillot
 Proof idea: use witness function method:
501 191 pbaillot
 \begin{itemize}
502 191 pbaillot
  \item use free-cut elimination theorem for the sequent calculus
503 191 pbaillot
  \item then prove the property by induction on sequent calculus rules
504 191 pbaillot
 \end{itemize}
505 191 pbaillot
  \end{frame}
506 191 pbaillot
507 191 pbaillot
508 191 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
509 191 pbaillot
510 191 pbaillot
\begin{frame}
511 191 pbaillot
  \frametitle{Proving completeness: in progress}
512 191 pbaillot
513 191 pbaillot
 Key intermediary claim:
514 191 pbaillot
 \begin{claim}
515 191 pbaillot
	\label{thm:completeness}
516 191 pbaillot
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that \RCi\  proves $$\forall^{\normal} \vec u  . \forall^{\safe} \vec x. \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$$ and $$\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x)).$$
517 191 pbaillot
\end{claim}
518 191 pbaillot
519 191 pbaillot
For the minimization construction case, we use \textit{well-ordering property} in \RCi\  .
520 191 pbaillot
 \end{frame}
521 191 pbaillot
522 191 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
523 191 pbaillot
524 191 pbaillot
\begin{frame}
525 191 pbaillot
  \frametitle{Related works}
526 191 pbaillot
527 191 pbaillot
 Two previous results \textit{apparently} clash with our claims:
528 191 pbaillot
 \begin{itemize}
529 191 pbaillot
\item   Bellantoni-Hofmann 02:
530 191 pbaillot
531 191 pbaillot
characterization of FP, with induction on arbitrarily quantified formulas
532 191 pbaillot
533 191 pbaillot
but \dots the underlying logic is not classical logic, but linear logic
534 191 pbaillot
535 191 pbaillot
\item   Cantini 02:
536 191 pbaillot
537 191 pbaillot
characterization of FP in a ramified classical logic, with induction on arbitrarily quantified formulas $A$
538 191 pbaillot
539 191 pbaillot
but \dots occurrences of $\safe$ in $A$ need to be positive, hence it corresponds to our $\Sigma^{\safe}_1$.
540 191 pbaillot
 \end{itemize}
541 191 pbaillot
 \end{frame}
542 191 pbaillot
543 191 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
544 191 pbaillot
545 191 pbaillot
\begin{frame}
546 191 pbaillot
  \frametitle{Conclusion and perspectives}
547 191 pbaillot
548 191 pbaillot
 \begin{itemize}
549 191 pbaillot
\item   we defined a ramified arithmetic with unbounded quantification which we claim is FPH sound, and  FPH complete
550 191 pbaillot
\item this yields an implicit analog of Buss' bounded arithmetic $S_2$, with a characterization of each level  $\fphi{i}$,  %by calibrating induction with quantifier alternation,
551 191 pbaillot
but where {\BA{bounded quantification}} has been replaced by {\ICC{safe quantification}}
552 191 pbaillot
\item  could \RC\ be presented as a modal logic (as in  Bellantoni-Hofmann02) ?
553 191 pbaillot
\item we think that \RCi\  can be directly embedded into the bounded arithmetic $S^i_2$
554 191 pbaillot
%study direct relationship of \RC\ with the bounded arithmetic $S_2$
555 191 pbaillot
\end{itemize}
556 191 pbaillot
 \end{frame}
557 191 pbaillot
558 188 pbaillot
\end{document}
559 188 pbaillot
560 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
561 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
562 188 pbaillot
%----------
563 188 pbaillot
564 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%
565 188 pbaillot
566 189 pbaillot
\begin{frame}
567 189 pbaillot
  \frametitle{}
568 188 pbaillot
569 189 pbaillot
 \begin{itemize}
570 189 pbaillot
\item   \end{itemize}
571 189 pbaillot
 \end{frame}
572 188 pbaillot
573 189 pbaillot
%%%%%%%%%%%%%%%%%%%%%%%%%%%