Révision 246 CSL17/preliminaries.tex
preliminaries.tex (revision 246) | ||
---|---|---|
188 | 188 |
|
189 | 189 |
\end{definition} |
190 | 190 |
|
191 |
Bellantoni showed the following result: |
|
191 | 192 |
|
192 |
|
|
193 | 193 |
\begin{theorem}[\cite{BellantoniThesis, Bellantoni95}]\label{thm:mubc} |
194 | 194 |
$\mubc =\fph$. Furthermore, for $i\geq 1$, $\mubc^{i-1} = \fphi{i}$. |
195 | 195 |
\end{theorem} |
196 | 196 |
|
197 |
|
|
198 |
\medskip
|
|
199 |
\noindent
|
|
200 |
\textbf{Some computational properties of $\mubc$ programs.}
|
|
201 |
We will need some bounds for $\mubc$ functions that we use later on;
|
|
202 |
all of this material is from \cite{bellantoni1995fph}.
|
|
197 |
In what follows we will recall some of the intermediate results and state a slightly stronger result that directly follows from \cite{bellantoni1995fph}. |
|
198 |
%
|
|
199 |
%\medskip
|
|
200 |
%\noindent
|
|
201 |
%\textbf{Some computational properties of $\mubc$ programs.}
|
|
202 |
At the same time these results give us access to bounds for $\mubc$ functions that we use later on.
|
|
203 | 203 |
|
204 | 204 |
\begin{definition} |
205 | 205 |
A function $f(\vec u; \vec x)$ is \textit{polymax bounded} if there exists a polynomial $q$ such that, |
Formats disponibles : Unified diff