root / CSL17 / DICE2017_TALK / unboundedArithmetic.tex @ 245
Historique | Voir | Annoter | Télécharger (15,98 ko)
1 | 188 | pbaillot | |
---|---|---|---|
2 | 188 | pbaillot | %\documentclass[pdf, pleasingblue,slideColor,colorBG]{prosper} |
3 | 188 | pbaillot | \documentclass{beamer} |
4 | 188 | pbaillot | \usepackage{amsfonts,latexsym,amssymb, amsmath} |
5 | 188 | pbaillot | \usepackage{stmaryrd} |
6 | 188 | pbaillot | \usepackage{graphicx} |
7 | 188 | pbaillot | \usepackage{eepic} |
8 | 188 | pbaillot | \usepackage[dvips]{epsfig} |
9 | 188 | pbaillot | %\usepackage{psfig} |
10 | 188 | pbaillot | %\input head.tex |
11 | 188 | pbaillot | \usepackage{proof,bussproofs} |
12 | 188 | pbaillot | %\usepackage{ desseins_s} |
13 | 188 | pbaillot | |
14 | 188 | pbaillot | |
15 | 188 | pbaillot | %\usepackage{microtype}%if unwanted, comment out or use option "draft" |
16 | 188 | pbaillot | %\usepackage[dvipsnames]{xcolor} |
17 | 188 | pbaillot | |
18 | 188 | pbaillot | %\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory |
19 | 188 | pbaillot | |
20 | 188 | pbaillot | %\bibliographystyle{plainurl}% the recommended bibstyle |
21 | 188 | pbaillot | |
22 | 188 | pbaillot | %\usepackage[lutzsyntax]{virginialake} |
23 | 188 | pbaillot | \input{ph-macros} |
24 | 188 | pbaillot | |
25 | 188 | pbaillot | |
26 | 188 | pbaillot | |
27 | 188 | pbaillot | \setbeamercolor{block title}{bg=blue!10} |
28 | 188 | pbaillot | \setbeamercolor{block body}{bg=blue!10} |
29 | 188 | pbaillot | \definecolor{monred}{HTML}{9D0909} |
30 | 188 | pbaillot | %\definecolor{monbleu}{RVB}{0,0,1} |
31 | 188 | pbaillot | \def\red#1{\color{red}{#1}} |
32 | 188 | pbaillot | \def\blue#1{\color{blue}{#1}} |
33 | 188 | pbaillot | \def\green#1{\color{green}{#1}} |
34 | 188 | pbaillot | \def\black{} |
35 | 188 | pbaillot | \def\BA#1{\color{red}{#1}} |
36 | 188 | pbaillot | \def\ICC#1{\color{blue}{#1}} |
37 | 188 | pbaillot | |
38 | 188 | pbaillot | |
39 | 188 | pbaillot | %%%%%%%%%%%%%ENVIRONMENTS AND THEOREM-STYLES %%%%%%%%%%%%%%%%%% |
40 | 188 | pbaillot | %\def\un#1{\underline{#1}} |
41 | 188 | pbaillot | %\def\point#1{{\bf #1.}} |
42 | 188 | pbaillot | %%\newcommand{\etq}[1]{\mbox{\scriptsize\bf #1}} |
43 | 188 | pbaillot | %\newcommand{\etq}[1]{\mbox{{\bf #1}}} |
44 | 188 | pbaillot | %\newcommand{\Rulone}[1]{% |
45 | 188 | pbaillot | % \begin{center} |
46 | 188 | pbaillot | % \makebox[12cm]{\hspace*{\fill} |
47 | 188 | pbaillot | % \begin{minipage}[c]{6cm} #1 \end{minipage} \hspace*{\fill} |
48 | 188 | pbaillot | % } |
49 | 188 | pbaillot | % \end{center} |
50 | 188 | pbaillot | % } |
51 | 188 | pbaillot | % |
52 | 188 | pbaillot | %\newcommand{\centra}[1]{\begin{center} #1 \end{center}} |
53 | 188 | pbaillot | % |
54 | 188 | pbaillot | %\newcommand{\Rultwo}[2]{% |
55 | 188 | pbaillot | % \begin{center} |
56 | 188 | pbaillot | % \makebox[12cm]{ |
57 | 188 | pbaillot | % \makebox[6cm]{\begin{minipage}[c]{6cm} #1 \end{minipage}} \hspace{20pt} |
58 | 188 | pbaillot | % \makebox[6cm]{\begin{minipage}[c]{6cm} #2 \end{minipage}} |
59 | 188 | pbaillot | % } |
60 | 188 | pbaillot | % \end{center} |
61 | 188 | pbaillot | % } |
62 | 188 | pbaillot | %\newcounter{ex} |
63 | 188 | pbaillot | %%\newtheorem{example}[ex]{Example} |
64 | 188 | pbaillot | % |
65 | 188 | pbaillot | % |
66 | 188 | pbaillot | %\def\para#1{\paragraph{#1}} |
67 | 188 | pbaillot | %\newtheorem{theo}{Theorem} |
68 | 188 | pbaillot | %\newtheorem{de}{Definition} |
69 | 188 | pbaillot | %\newtheorem{prop}[theo]{Proposition} |
70 | 188 | pbaillot | %\newtheorem{lem}[theo]{Lemma} |
71 | 188 | pbaillot | %\newtheorem{Cor}[theo]{Corollary} |
72 | 188 | pbaillot | %\newtheorem{remark}[theo]{Remark} |
73 | 188 | pbaillot | %\newcounter{pb} |
74 | 188 | pbaillot | %\newtheorem{problem}[pb]{Problem} |
75 | 188 | pbaillot | %\newenvironment{proof}{\noindent{\bfseries Proof :}}{\hbox{}\hfill$\Box$} |
76 | 188 | pbaillot | |
77 | 188 | pbaillot | %--------------------- |
78 | 188 | pbaillot | %% Definition of new colors |
79 | 188 | pbaillot | %\newrgbcolor{LemonChiffon}{1. 0.98 0.8} |
80 | 188 | pbaillot | % |
81 | 188 | pbaillot | %\newrgbcolor{LightBlue}{0.68 0.85 0.9} |
82 | 188 | pbaillot | %\newrgbcolor{Dgreen}{0 0.6 0.4} |
83 | 188 | pbaillot | %%\newrgbcolor{DBlue}{0 0 0.5} |
84 | 188 | pbaillot | %\newrgbcolor{DBlue}{0 0 0.6} |
85 | 188 | pbaillot | %\newrgbcolor{Dblue}{0 0 0.6} |
86 | 188 | pbaillot | %%---------------------- |
87 | 188 | pbaillot | %%% MORE Color definitions |
88 | 188 | pbaillot | %\newrgbcolor{DarkGray}{.284 .210 .410} |
89 | 188 | pbaillot | %\newrgbcolor{Violet}{.2 .2 .9} |
90 | 188 | pbaillot | |
91 | 188 | pbaillot | %--------------------- |
92 | 188 | pbaillot | |
93 | 188 | pbaillot | \mode<presentation> |
94 | 188 | pbaillot | { |
95 | 188 | pbaillot | \usetheme{Warsaw} |
96 | 188 | pbaillot | % or ... |
97 | 188 | pbaillot | |
98 | 188 | pbaillot | \setbeamercovered{transparent} |
99 | 188 | pbaillot | % or whatever (possibly just delete it) |
100 | 188 | pbaillot | } |
101 | 188 | pbaillot | |
102 | 188 | pbaillot | |
103 | 188 | pbaillot | \title{Towards an Unbounded Implicit Arithmetic for\\ |
104 | 188 | pbaillot | the Polynomial Hierarchy |
105 | 188 | pbaillot | } |
106 | 188 | pbaillot | |
107 | 188 | pbaillot | \author{Patrick Baillot and Anupam Das} |
108 | 191 | pbaillot | \institute{CNRS / ENS Lyon\\ |
109 | 191 | pbaillot | DICE-FOPARA 2017 workshop, Uppsala} |
110 | 188 | pbaillot | |
111 | 188 | pbaillot | |
112 | 188 | pbaillot | \begin{document} |
113 | 188 | pbaillot | \maketitle |
114 | 188 | pbaillot | |
115 | 188 | pbaillot | |
116 | 188 | pbaillot | \begin{frame} |
117 | 188 | pbaillot | \frametitle{Introduction} |
118 | 188 | pbaillot | |
119 | 188 | pbaillot | 2 cousin approaches to logical characterization of complexity classes: |
120 | 188 | pbaillot | |
121 | 188 | pbaillot | \bigskip |
122 | 188 | pbaillot | |
123 | 188 | pbaillot | \begin{tabular}{l|l} |
124 | 188 | pbaillot | \BA{Bounded arithmetic (86 -- )} & \ICC{Implicit computational complexity (91 --)}\\ |
125 | 188 | pbaillot | & \ICC{(ICC)}\\ |
126 | 188 | pbaillot | \hline |
127 | 188 | pbaillot | &\\ |
128 | 191 | pbaillot | % & function algebras\\ |
129 | 191 | pbaillot | % & types/proofs-as-programs\\ |
130 | 191 | pbaillot | arithmetic & arithmetics / logics\\ |
131 | 188 | pbaillot | & \\ |
132 | 188 | pbaillot | large variety of & resource-free characterizations of\\ |
133 | 188 | pbaillot | complexity classes & complexity classes (e.g. ramification)\\ |
134 | 188 | pbaillot | &\\ |
135 | 191 | pbaillot | correspondence with & extensions to programming languages\\ |
136 | 188 | pbaillot | \textit{proof-complexity} & |
137 | 188 | pbaillot | \end{tabular} |
138 | 188 | pbaillot | \end{frame} |
139 | 188 | pbaillot | |
140 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
141 | 188 | pbaillot | |
142 | 188 | pbaillot | \begin{frame} |
143 | 188 | pbaillot | \frametitle{Introduction} |
144 | 188 | pbaillot | |
145 | 188 | pbaillot | $$ \mbox{"\textit{$f$ is provably total in system} XXX"} \Leftrightarrow \quad f \in \mbox{ complexity class YYY }$$ |
146 | 188 | pbaillot | |
147 | 188 | pbaillot | \bigskip |
148 | 188 | pbaillot | |
149 | 188 | pbaillot | \begin{tabular}{l|l} |
150 | 188 | pbaillot | \BA{Bounded arithmetic} \qquad \qquad & \ICC{Implicit computational complexity}\\ |
151 | 188 | pbaillot | \hline |
152 | 188 | pbaillot | &\\ |
153 | 191 | pbaillot | Buss ($S_2$): & Leivant (intrinsic theories): \\ |
154 | 191 | pbaillot | $\forall x, {\exists y } . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\ |
155 | 188 | pbaillot | &\\ |
156 | 188 | pbaillot | FP, FPH & FP |
157 | 188 | pbaillot | \end{tabular} |
158 | 188 | pbaillot | \end{frame} |
159 | 188 | pbaillot | |
160 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
161 | 188 | pbaillot | |
162 | 188 | pbaillot | \begin{frame} |
163 | 188 | pbaillot | \frametitle{{A current limitation of ICC logics}} |
164 | 188 | pbaillot | |
165 | 188 | pbaillot | \begin{itemize} |
166 | 188 | pbaillot | \item fewer complexity classes characterized by {\ICC{ICC logics}} than by {\BA{bounded arithmetic}} |
167 | 189 | pbaillot | \item in particular, {\ICC{ICC logics}} not so satisfactory for non-deterministic classes |
168 | 188 | pbaillot | |
169 | 188 | pbaillot | e.g. NP, PH (polynomial hierarchy) \dots |
170 | 188 | pbaillot | |
171 | 188 | pbaillot | \end{itemize} |
172 | 188 | pbaillot | \end{frame} |
173 | 188 | pbaillot | |
174 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
175 | 188 | pbaillot | |
176 | 188 | pbaillot | \begin{frame} |
177 | 188 | pbaillot | \frametitle{Recap : the polynomial hierarchy} |
178 | 188 | pbaillot | |
179 | 188 | pbaillot | \begin{itemize} |
180 | 191 | pbaillot | \item NP: polynomially checkable with polysize witness |
181 | 191 | pbaillot | |
182 | 191 | pbaillot | $NP=\Sigma_1^P$ example: $k$-CLIQUE |
183 | 191 | pbaillot | |
184 | 191 | pbaillot | $$\exists^{|s_1|\leq k } s_1, (|s_1|=k \cand \mbox{CLIQUE}(s_1,x))$$ |
185 | 191 | pbaillot | \item $\Sigma_2^P$ example: $k$-MAXCLIQUE |
186 | 191 | pbaillot | \end{itemize} |
187 | 191 | pbaillot | $$ \begin{array}{l} |
188 | 191 | pbaillot | \exists^{|s_1|\leq k } s_1, \forall^{|s_2|\leq k+1 } s_2,\\ |
189 | 192 | pbaillot | (|s_1|=k \cand \mbox{CLIQUE}(s_1,x) \cand (s_1\subsetneq s_2 \rightarrow \neg \mbox{CLIQUE}(s_2,x)) ) |
190 | 191 | pbaillot | \end{array} |
191 | 191 | pbaillot | $$ |
192 | 191 | pbaillot | \begin{itemize} |
193 | 191 | pbaillot | \item $\Sigma_i^P$: |
194 | 191 | pbaillot | $$ |
195 | 191 | pbaillot | \exists^{|s_1|\leq P_1(x) } s_1, \forall^{|s_2|\leq P_2(x) } s_2, \dots Q^{|s_i|\leq P_i(x) } s_i, |
196 | 191 | pbaillot | \mbox{Pred}(\vec s, x)$$ |
197 | 191 | pbaillot | for Pred a Ptime predicate. |
198 | 191 | pbaillot | \end{itemize} |
199 | 188 | pbaillot | \end{frame} |
200 | 188 | pbaillot | |
201 | 191 | pbaillot | |
202 | 191 | pbaillot | \begin{frame} |
203 | 191 | pbaillot | \frametitle{Recap : the polynomial hierarchy} |
204 | 191 | pbaillot | |
205 | 191 | pbaillot | \begin{itemize} |
206 | 191 | pbaillot | \item polynomial hierarchy: |
207 | 191 | pbaillot | $$ \mbox{PH}= \cup_i \Sigma_i^P$$ |
208 | 191 | pbaillot | \item functional version: |
209 | 191 | pbaillot | \begin{eqnarray*} |
210 | 191 | pbaillot | \fphi{i} &=& \mbox{FP}^{\Sigma_{i-1}^P}\\ |
211 | 191 | pbaillot | \mbox{FPH} &=& \cup_i \fphi{i} |
212 | 191 | pbaillot | \end{eqnarray*} |
213 | 191 | pbaillot | \end{itemize} |
214 | 191 | pbaillot | |
215 | 191 | pbaillot | in particular: |
216 | 191 | pbaillot | |
217 | 191 | pbaillot | $\fphi{1}=\mbox{FP}, \qquad \fphi{2}=\mbox{FP}^{\mbox{NP}}$. |
218 | 191 | pbaillot | \end{frame} |
219 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
220 | 188 | pbaillot | |
221 | 188 | pbaillot | \begin{frame} |
222 | 188 | pbaillot | \frametitle{Our goal} |
223 | 188 | pbaillot | |
224 | 189 | pbaillot | design an {\ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH |
225 | 188 | pbaillot | |
226 | 188 | pbaillot | \medskip |
227 | 188 | pbaillot | |
228 | 188 | pbaillot | expected benefits: |
229 | 188 | pbaillot | \begin{itemize} |
230 | 188 | pbaillot | \item bridge {\BA{bounded arithmetic}} and {\ICC{ICC logics}} |
231 | 189 | pbaillot | \item enlarge the toolbox of {\ICC{ICC logics}}, by exploring the power of quantification (under-investigated in ICC) |
232 | 188 | pbaillot | \end{itemize} |
233 | 188 | pbaillot | \end{frame} |
234 | 188 | pbaillot | |
235 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
236 | 188 | pbaillot | |
237 | 188 | pbaillot | \begin{frame} |
238 | 188 | pbaillot | \frametitle{Methodology} |
239 | 188 | pbaillot | |
240 | 188 | pbaillot | We want to use: |
241 | 188 | pbaillot | \begin{itemize} |
242 | 189 | pbaillot | \item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}} |
243 | 191 | pbaillot | \item induction calibrated by logical complexity (quantifiers), from {\BA{bounded arithmetic}} |
244 | 191 | pbaillot | % \item our \textit{key idea}: |
245 | 191 | pbaillot | % |
246 | 191 | pbaillot | % trade{ \BA{bounded quantifiers $\forall x \leq t$, $\exists x \leq t$ of bounded arithmetic}} |
247 | 191 | pbaillot | % |
248 | 191 | pbaillot | % for {\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$, $\exists^{\safe} x$ in a ramified arithmetic}} |
249 | 188 | pbaillot | \end{itemize} |
250 | 188 | pbaillot | \end{frame} |
251 | 188 | pbaillot | |
252 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
253 | 188 | pbaillot | |
254 | 188 | pbaillot | \begin{frame} |
255 | 190 | pbaillot | \frametitle{Ramification} |
256 | 190 | pbaillot | |
257 | 190 | pbaillot | \begin{itemize} |
258 | 190 | pbaillot | \item ramification, a.k.a. tiering, safe recursion |
259 | 190 | pbaillot | \item distinguish two levels of data-types: |
260 | 190 | pbaillot | |
261 | 190 | pbaillot | ${\red{N_1}}$ (\textit{normal}) integers can trigger induction/recursion |
262 | 190 | pbaillot | |
263 | 190 | pbaillot | ${{N_0}}$ (\textit{safe}) integers cannot; they can just be finitely explored |
264 | 191 | pbaillot | |
265 | 191 | pbaillot | %\smallskip |
266 | 191 | pbaillot | |
267 | 191 | pbaillot | \item BC function algebra (Bellantoni-Cook 92): |
268 | 191 | pbaillot | |
269 | 191 | pbaillot | $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$ |
270 | 191 | pbaillot | |
271 | 191 | pbaillot | safe recursion scheme: |
272 | 190 | pbaillot | $$ f({\red{\succ{i} u, \vec v}}{\textbf ;} \vec x)=F_i ({\red{u,\vec v}}{\textbf ; }f(u, \vec v;\vec x), \vec x)$$ |
273 | 190 | pbaillot | \item function algebra for FP: Bellantoni-Cook 92, Leivant 93 |
274 | 190 | pbaillot | |
275 | 191 | pbaillot | logic for FP: Leivant 95, Cantini 02, Bellantoni-Hofmann 02 |
276 | 190 | pbaillot | \end{itemize} |
277 | 190 | pbaillot | \end{frame} |
278 | 191 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
279 | 190 | pbaillot | |
280 | 191 | pbaillot | \begin{frame} |
281 | 191 | pbaillot | \frametitle{Methodology: our key idea} |
282 | 191 | pbaillot | |
283 | 191 | pbaillot | % We want to use: |
284 | 191 | pbaillot | \begin{itemize} |
285 | 191 | pbaillot | %\item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}} |
286 | 191 | pbaillot | % \item induction calibrated by logical complexity (quantifiers), from {\BA{bounded arithmetic}} |
287 | 191 | pbaillot | % \item our \textit{key idea}: |
288 | 191 | pbaillot | |
289 | 191 | pbaillot | \item trade |
290 | 191 | pbaillot | |
291 | 191 | pbaillot | { \BA{bounded quantifiers $\forall x \leq t$, $\exists x \leq t$ of bounded arithmetic}} |
292 | 191 | pbaillot | |
293 | 191 | pbaillot | for |
294 | 191 | pbaillot | |
295 | 191 | pbaillot | {\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$, $\exists^{\safe} x$ in a ramified arithmetic}} |
296 | 191 | pbaillot | \item calibrate the arithmetic by considering the number of ({\ICC{safe}}) quantifier alternations in induction formulas $A$, as in |
297 | 191 | pbaillot | {\BA{bounded arithmetic}} |
298 | 191 | pbaillot | \end{itemize} |
299 | 191 | pbaillot | \end{frame} |
300 | 191 | pbaillot | |
301 | 190 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
302 | 190 | pbaillot | \begin{frame} |
303 | 189 | pbaillot | \frametitle{Ingredients for a logical characterization} |
304 | 188 | pbaillot | |
305 | 188 | pbaillot | \begin{itemize} |
306 | 189 | pbaillot | \item choose a way to \textit{specify} functions |
307 | 189 | pbaillot | \item choose a logic: |
308 | 189 | pbaillot | |
309 | 189 | pbaillot | logical system + axioms, induction scheme |
310 | 189 | pbaillot | \item prove soundness: |
311 | 189 | pbaillot | |
312 | 189 | pbaillot | realizability-like argument, with a well-chosen \textit{target language} |
313 | 189 | pbaillot | \item prove completeness |
314 | 189 | pbaillot | \end{itemize} |
315 | 188 | pbaillot | \end{frame} |
316 | 188 | pbaillot | |
317 | 188 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
318 | 188 | pbaillot | |
319 | 188 | pbaillot | \begin{frame} |
320 | 189 | pbaillot | \frametitle{Specifying the functions} |
321 | 188 | pbaillot | |
322 | 191 | pbaillot | Various approaches at hand to specify a function $f$ in a logic: |
323 | 188 | pbaillot | \begin{itemize} |
324 | 189 | pbaillot | \item {\BA{formula specification}} (bounded arithmetic): |
325 | 188 | pbaillot | |
326 | 189 | pbaillot | a formula $A_f$ defines the graph of $f$ |
327 | 189 | pbaillot | \item {\ICC{equational specification}} (Leivant: intrinsic theories) |
328 | 188 | pbaillot | |
329 | 189 | pbaillot | conjunction of first-order equations defining $f$ |
330 | 188 | pbaillot | |
331 | 191 | pbaillot | \item combinatory terms (applicative theories: Feferman, Cantini, Kahle-Oitavem \dots) |
332 | 188 | pbaillot | |
333 | 191 | pbaillot | terms of combinatory algebra computing $f$ |
334 | 189 | pbaillot | \item \dots |
335 | 188 | pbaillot | |
336 | 188 | pbaillot | \end{itemize} |
337 | 189 | pbaillot | \end{frame} |
338 | 188 | pbaillot | |
339 | 189 | pbaillot | \begin{frame} |
340 | 189 | pbaillot | \frametitle{Our logical system} |
341 | 188 | pbaillot | |
342 | 191 | pbaillot | Ramified classical arithmetic (\RC): |
343 | 189 | pbaillot | \begin{itemize} |
344 | 189 | pbaillot | \item 1st-order classical logic \dots |
345 | 189 | pbaillot | \item \dots over the language: |
346 | 188 | pbaillot | \begin{itemize} |
347 | 189 | pbaillot | \item functions and constants: $0, \succ, +, \cdot, \smsh, |.|$ |
348 | 189 | pbaillot | \item predicates: $\leq, {\ICC{N_0}}, {\ICC{N_1}}$ |
349 | 188 | pbaillot | \end{itemize} |
350 | 189 | pbaillot | \item with axioms: |
351 | 189 | pbaillot | \begin{itemize} |
352 | 191 | pbaillot | \item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_2$, but sorted) |
353 | 188 | pbaillot | \smallskip |
354 | 188 | pbaillot | |
355 | 189 | pbaillot | notation: |
356 | 188 | pbaillot | |
357 | 189 | pbaillot | $\begin{array}{lcl} |
358 | 189 | pbaillot | \succ{0}x &:=& 2\cdot x\\ |
359 | 189 | pbaillot | \succ{1}x & :=& \succ{}(2\cdot x) |
360 | 188 | pbaillot | \end{array} |
361 | 189 | pbaillot | $ |
362 | 189 | pbaillot | \item polynomial induction IND: |
363 | 188 | pbaillot | \end{itemize} |
364 | 188 | pbaillot | \end{itemize} |
365 | 189 | pbaillot | {\small $$ A(0) |
366 | 189 | pbaillot | \rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{0} x) ) ) |
367 | 189 | pbaillot | \rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{1} x) ) ) |
368 | 189 | pbaillot | \rightarrow \forall x^{\normal} . A(x) $$ |
369 | 189 | pbaillot | } |
370 | 189 | pbaillot | |
371 | 189 | pbaillot | Define all that within a sequent calculus system. |
372 | 189 | pbaillot | |
373 | 189 | pbaillot | $\mathcal{C}$-\RC\ is \RC\ with IND restricted to formulas $A$ belonging to the class $\mathcal{C}$ of formulas. |
374 | 189 | pbaillot | \end{frame} |
375 | 188 | pbaillot | |
376 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
377 | 188 | pbaillot | |
378 | 189 | pbaillot | \begin{frame} |
379 | 189 | pbaillot | \frametitle{Classification of quantifications} |
380 | 188 | pbaillot | |
381 | 191 | pbaillot | % Write $Q$ for $\forall$ or $\exists$. |
382 | 189 | pbaillot | \begin{itemize} |
383 | 191 | pbaillot | \item safe ($N_0$) quantifiers: |
384 | 191 | pbaillot | \begin{eqnarray*} |
385 | 191 | pbaillot | \forall^{N_0}x.A &:=& \forall x.(N_0(x) \rightarrow A)\\ |
386 | 191 | pbaillot | \exists^{N_0}x.A &:=& \exists x.(N_0(x) \cand A) |
387 | 191 | pbaillot | \end{eqnarray*} |
388 | 191 | pbaillot | \item sharply bounded normal ($\normal$) quantifiers: |
389 | 191 | pbaillot | \begin{eqnarray*} |
390 | 191 | pbaillot | \forall^{N_1}x\leq |t| .A &:=& \forall x.(N_1(x) \rightarrow (x\leq |t|) \rightarrow A)\\ |
391 | 191 | pbaillot | \exists^{N_1}x\leq |t| .A &:=& \exists x.(N_1(x) \cand(x\leq |t|) \cand A) |
392 | 191 | pbaillot | \end{eqnarray*} |
393 | 191 | pbaillot | %$$Q^{N_i}x\leq |t|.\; A := Qx.(N_i(x) \rightarrow (x\leq |t|) \rightarrow A)$$ |
394 | 188 | pbaillot | \end{itemize} |
395 | 189 | pbaillot | \end{frame} |
396 | 188 | pbaillot | |
397 | 189 | pbaillot | %%%%%%%%%%% |
398 | 189 | pbaillot | \begin{frame} |
399 | 189 | pbaillot | \frametitle{Quantifier hierarchy} |
400 | 188 | pbaillot | |
401 | 189 | pbaillot | We define: |
402 | 189 | pbaillot | \begin{itemize} |
403 | 189 | pbaillot | \item $\Sigma^\safe_0 = \Pi^\safe_0 $= formulas with only sharply bounded quantifiers, |
404 | 189 | pbaillot | \item $\Sigma^\safe_{i+1}$= closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers, |
405 | 189 | pbaillot | \item $\Pi^\safe_{i+1}$ = closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers, |
406 | 189 | pbaillot | \item $\Sigma^\safe= \cup_i \Sigma^\safe_i$. |
407 | 188 | pbaillot | \end{itemize} |
408 | 188 | pbaillot | \end{frame} |
409 | 188 | pbaillot | |
410 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
411 | 188 | pbaillot | |
412 | 189 | pbaillot | \begin{frame} |
413 | 189 | pbaillot | \frametitle{Result and work-in-progress} |
414 | 188 | pbaillot | |
415 | 191 | pbaillot | \begin{claim}[Soundness] |
416 | 189 | pbaillot | If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$. |
417 | 191 | pbaillot | \end{claim} |
418 | 188 | pbaillot | |
419 | 191 | pbaillot | \begin{claim}[Completeness] |
420 | 192 | pbaillot | If $f$ $f$ belongs to $\fphi{i}$ then $f$ is provably total in \RCi\ . |
421 | 191 | pbaillot | \end{claim} |
422 | 188 | pbaillot | |
423 | 188 | pbaillot | \end{frame} |
424 | 188 | pbaillot | |
425 | 191 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
426 | 191 | pbaillot | |
427 | 191 | pbaillot | \begin{frame} |
428 | 191 | pbaillot | \frametitle{Proof idea for soundness: target language $\mu$BC} |
429 | 191 | pbaillot | |
430 | 191 | pbaillot | \begin{itemize} |
431 | 191 | pbaillot | \item target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH |
432 | 191 | pbaillot | \item BC algebra: $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$ |
433 | 191 | pbaillot | \begin{itemize} |
434 | 191 | pbaillot | \item initial functions: $p$, $\pi^n_i$, \dots |
435 | 191 | pbaillot | \item safe recursion |
436 | 191 | pbaillot | \item safe composition |
437 | 191 | pbaillot | \end{itemize} |
438 | 191 | pbaillot | |
439 | 191 | pbaillot | BC characterizes the class FP (Bellantoni-Cook 92). |
440 | 191 | pbaillot | %\item $\mu$BC: extends BC with \textit{predicative minimization} |
441 | 191 | pbaillot | % |
442 | 191 | pbaillot | %$f({\red{\vec u}}; \vec x):= \begin{cases} |
443 | 191 | pbaillot | % s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\ |
444 | 191 | pbaillot | %0 & \mbox{ otherwise,} |
445 | 191 | pbaillot | %\end{cases} |
446 | 191 | pbaillot | %$ |
447 | 191 | pbaillot | % |
448 | 191 | pbaillot | % $\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization |
449 | 191 | pbaillot | \end{itemize} |
450 | 191 | pbaillot | \end{frame} |
451 | 191 | pbaillot | |
452 | 191 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
453 | 191 | pbaillot | |
454 | 191 | pbaillot | \begin{frame} |
455 | 191 | pbaillot | \frametitle{Proof idea for soundness: target language $\mu$BC} |
456 | 191 | pbaillot | |
457 | 191 | pbaillot | \begin{itemize} |
458 | 191 | pbaillot | %\item target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH |
459 | 191 | pbaillot | %\item BC algebra: $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$ |
460 | 191 | pbaillot | %\begin{itemize} |
461 | 191 | pbaillot | % \item initial functions: $p$, $\pi^n_i$, \dots |
462 | 191 | pbaillot | % \item safe recursion |
463 | 191 | pbaillot | % \item safe composition |
464 | 191 | pbaillot | %\end{itemize} |
465 | 191 | pbaillot | % |
466 | 191 | pbaillot | %BC characterizes the class FP (Bellantoni-Cook 92). |
467 | 191 | pbaillot | \item $\mu$BC: extends BC with \textit{predicative minimization} |
468 | 191 | pbaillot | |
469 | 191 | pbaillot | $f({\red{\vec u}}; \vec x):= \begin{cases} |
470 | 191 | pbaillot | s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\ |
471 | 191 | pbaillot | 0 & \mbox{ otherwise,} |
472 | 191 | pbaillot | \end{cases} |
473 | 191 | pbaillot | $ |
474 | 191 | pbaillot | |
475 | 191 | pbaillot | $\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization |
476 | 191 | pbaillot | \item one obtains |
477 | 191 | pbaillot | |
478 | 191 | pbaillot | \begin{theorem}[Bellantoni 92] |
479 | 191 | pbaillot | |
480 | 191 | pbaillot | The functions of $\mu$BC are exactly those of FPH. |
481 | 191 | pbaillot | |
482 | 191 | pbaillot | The functions of $\mu \mbox{BC}^{\; i-1}$ are exactly those of $\fphi{i}$. |
483 | 191 | pbaillot | \end{theorem} |
484 | 191 | pbaillot | \end{itemize} |
485 | 191 | pbaillot | \end{frame} |
486 | 191 | pbaillot | |
487 | 191 | pbaillot | |
488 | 191 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
489 | 191 | pbaillot | |
490 | 191 | pbaillot | \begin{frame} |
491 | 191 | pbaillot | \frametitle{Proving soundness} |
492 | 191 | pbaillot | |
493 | 191 | pbaillot | Key intermediary property to prove: |
494 | 191 | pbaillot | \begin{claim} |
495 | 191 | pbaillot | If \RCi\ proves |
496 | 191 | pbaillot | $$\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$$ |
497 | 191 | pbaillot | then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that |
498 | 191 | pbaillot | $$\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x)).$$ |
499 | 191 | pbaillot | \end{claim} |
500 | 191 | pbaillot | Proof idea: use witness function method: |
501 | 191 | pbaillot | \begin{itemize} |
502 | 191 | pbaillot | \item use free-cut elimination theorem for the sequent calculus |
503 | 191 | pbaillot | \item then prove the property by induction on sequent calculus rules |
504 | 191 | pbaillot | \end{itemize} |
505 | 191 | pbaillot | \end{frame} |
506 | 191 | pbaillot | |
507 | 191 | pbaillot | |
508 | 191 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
509 | 191 | pbaillot | |
510 | 191 | pbaillot | \begin{frame} |
511 | 191 | pbaillot | \frametitle{Proving completeness: in progress} |
512 | 191 | pbaillot | |
513 | 191 | pbaillot | Key intermediary claim: |
514 | 191 | pbaillot | \begin{claim} |
515 | 191 | pbaillot | \label{thm:completeness} |
516 | 191 | pbaillot | For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that \RCi\ proves $$\forall^{\normal} \vec u . \forall^{\safe} \vec x. \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$$ and $$\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x)).$$ |
517 | 191 | pbaillot | \end{claim} |
518 | 191 | pbaillot | |
519 | 191 | pbaillot | For the minimization construction case, we use \textit{well-ordering property} in \RCi\ . |
520 | 191 | pbaillot | \end{frame} |
521 | 191 | pbaillot | |
522 | 191 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
523 | 191 | pbaillot | |
524 | 191 | pbaillot | \begin{frame} |
525 | 191 | pbaillot | \frametitle{Related works} |
526 | 191 | pbaillot | |
527 | 191 | pbaillot | Two previous results \textit{apparently} clash with our claims: |
528 | 191 | pbaillot | \begin{itemize} |
529 | 191 | pbaillot | \item Bellantoni-Hofmann 02: |
530 | 191 | pbaillot | |
531 | 191 | pbaillot | characterization of FP, with induction on arbitrarily quantified formulas |
532 | 191 | pbaillot | |
533 | 191 | pbaillot | but \dots the underlying logic is not classical logic, but linear logic |
534 | 191 | pbaillot | |
535 | 191 | pbaillot | \item Cantini 02: |
536 | 191 | pbaillot | |
537 | 191 | pbaillot | characterization of FP in a ramified classical logic, with induction on arbitrarily quantified formulas $A$ |
538 | 191 | pbaillot | |
539 | 191 | pbaillot | but \dots occurrences of $\safe$ in $A$ need to be positive, hence it corresponds to our $\Sigma^{\safe}_1$. |
540 | 191 | pbaillot | \end{itemize} |
541 | 191 | pbaillot | \end{frame} |
542 | 191 | pbaillot | |
543 | 191 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
544 | 191 | pbaillot | |
545 | 191 | pbaillot | \begin{frame} |
546 | 191 | pbaillot | \frametitle{Conclusion and perspectives} |
547 | 191 | pbaillot | |
548 | 191 | pbaillot | \begin{itemize} |
549 | 191 | pbaillot | \item we defined a ramified arithmetic with unbounded quantification which we claim is FPH sound, and FPH complete |
550 | 191 | pbaillot | \item this yields an implicit analog of Buss' bounded arithmetic $S_2$, with a characterization of each level $\fphi{i}$, %by calibrating induction with quantifier alternation, |
551 | 191 | pbaillot | but where {\BA{bounded quantification}} has been replaced by {\ICC{safe quantification}} |
552 | 191 | pbaillot | \item could \RC\ be presented as a modal logic (as in Bellantoni-Hofmann02) ? |
553 | 191 | pbaillot | \item we think that \RCi\ can be directly embedded into the bounded arithmetic $S^i_2$ |
554 | 191 | pbaillot | %study direct relationship of \RC\ with the bounded arithmetic $S_2$ |
555 | 191 | pbaillot | \end{itemize} |
556 | 191 | pbaillot | \end{frame} |
557 | 191 | pbaillot | |
558 | 188 | pbaillot | \end{document} |
559 | 188 | pbaillot | |
560 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
561 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
562 | 188 | pbaillot | %---------- |
563 | 188 | pbaillot | |
564 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |
565 | 188 | pbaillot | |
566 | 189 | pbaillot | \begin{frame} |
567 | 189 | pbaillot | \frametitle{} |
568 | 188 | pbaillot | |
569 | 189 | pbaillot | \begin{itemize} |
570 | 189 | pbaillot | \item \end{itemize} |
571 | 189 | pbaillot | \end{frame} |
572 | 188 | pbaillot | |
573 | 189 | pbaillot | %%%%%%%%%%%%%%%%%%%%%%%%%%% |