Statistiques
| Révision :

root / CSL17 / DICE2017_TALK / unboundedArithmetic.tex @ 242

Historique | Voir | Annoter | Télécharger (15,98 ko)

1

    
2
%\documentclass[pdf, pleasingblue,slideColor,colorBG]{prosper}
3
\documentclass{beamer}
4
\usepackage{amsfonts,latexsym,amssymb, amsmath}
5
\usepackage{stmaryrd}
6
\usepackage{graphicx} 
7
\usepackage{eepic}
8
\usepackage[dvips]{epsfig}
9
%\usepackage{psfig}
10
%\input head.tex
11
\usepackage{proof,bussproofs}
12
%\usepackage{ desseins_s}
13

    
14

    
15
%\usepackage{microtype}%if unwanted, comment out or use option "draft"
16
%\usepackage[dvipsnames]{xcolor}
17

    
18
%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory
19

    
20
%\bibliographystyle{plainurl}% the recommended bibstyle
21

    
22
%\usepackage[lutzsyntax]{virginialake}
23
\input{ph-macros}
24

    
25

    
26

    
27
\setbeamercolor{block title}{bg=blue!10}
28
\setbeamercolor{block body}{bg=blue!10}
29
\definecolor{monred}{HTML}{9D0909}
30
%\definecolor{monbleu}{RVB}{0,0,1}
31
 \def\red#1{\color{red}{#1}}
32
 \def\blue#1{\color{blue}{#1}}
33
 \def\green#1{\color{green}{#1}}
34
\def\black{}
35
\def\BA#1{\color{red}{#1}}
36
 \def\ICC#1{\color{blue}{#1}}
37

    
38

    
39
%%%%%%%%%%%%%ENVIRONMENTS AND THEOREM-STYLES %%%%%%%%%%%%%%%%%%
40
%\def\un#1{\underline{#1}}
41
%\def\point#1{{\bf #1.}}
42
%%\newcommand{\etq}[1]{\mbox{\scriptsize\bf #1}}
43
%\newcommand{\etq}[1]{\mbox{{\bf #1}}}
44
%\newcommand{\Rulone}[1]{%
45
%          \begin{center}
46
%           \makebox[12cm]{\hspace*{\fill}
47
%                 \begin{minipage}[c]{6cm} #1 \end{minipage} \hspace*{\fill}
48
%                }
49
%          \end{center}
50
%  }
51
%
52
%\newcommand{\centra}[1]{\begin{center} #1 \end{center}}
53
%
54
%\newcommand{\Rultwo}[2]{%
55
%          \begin{center}
56
%           \makebox[12cm]{
57
%         \makebox[6cm]{\begin{minipage}[c]{6cm} #1 \end{minipage}} \hspace{20pt}
58
%         \makebox[6cm]{\begin{minipage}[c]{6cm} #2 \end{minipage}}
59
%                }
60
%          \end{center}
61
%  }
62
%\newcounter{ex}
63
%%\newtheorem{example}[ex]{Example}
64
%
65
%
66
%\def\para#1{\paragraph{#1}}
67
%\newtheorem{theo}{Theorem}
68
%\newtheorem{de}{Definition}
69
%\newtheorem{prop}[theo]{Proposition}
70
%\newtheorem{lem}[theo]{Lemma}
71
%\newtheorem{Cor}[theo]{Corollary}
72
%\newtheorem{remark}[theo]{Remark}
73
%\newcounter{pb}
74
%\newtheorem{problem}[pb]{Problem}
75
%\newenvironment{proof}{\noindent{\bfseries Proof :}}{\hbox{}\hfill$\Box$}
76

    
77
%---------------------
78
%% Definition of new colors
79
%\newrgbcolor{LemonChiffon}{1. 0.98 0.8}
80
%
81
%\newrgbcolor{LightBlue}{0.68 0.85 0.9}
82
%\newrgbcolor{Dgreen}{0  0.6 0.4}
83
%%\newrgbcolor{DBlue}{0  0 0.5}
84
%\newrgbcolor{DBlue}{0  0 0.6}
85
%\newrgbcolor{Dblue}{0  0 0.6}
86
%%----------------------
87
%%% MORE Color definitions
88
%\newrgbcolor{DarkGray}{.284 .210 .410}
89
%\newrgbcolor{Violet}{.2 .2  .9}
90

    
91
%---------------------
92

    
93
\mode<presentation>
94
{
95
  \usetheme{Warsaw}
96
  % or ...
97

    
98
  \setbeamercovered{transparent}
99
  % or whatever (possibly just delete it)
100
}
101

    
102

    
103
\title{Towards an Unbounded Implicit Arithmetic for\\
104
the Polynomial Hierarchy
105
}
106

    
107
\author{Patrick Baillot and Anupam Das}
108
\institute{CNRS / ENS Lyon\\
109
DICE-FOPARA 2017 workshop, Uppsala}
110

    
111

    
112
\begin{document}
113
\maketitle
114

    
115

    
116
\begin{frame}
117
  \frametitle{Introduction}
118
 
119
 2 cousin approaches to logical characterization of complexity classes:
120
 
121
\bigskip 
122

    
123
 \begin{tabular}{l|l}
124
 \BA{Bounded arithmetic (86 -- )} & \ICC{Implicit computational complexity  (91 --)}\\
125
      & \ICC{(ICC)}\\
126
 \hline
127
 &\\
128
% & function algebras\\
129
% & types/proofs-as-programs\\
130
arithmetic & arithmetics / logics\\
131
 & \\
132
 large variety of & resource-free characterizations of\\
133
 complexity classes & complexity classes (e.g. ramification)\\
134
 &\\
135
 correspondence with & extensions to programming languages\\
136
 \textit{proof-complexity} &
137
 \end{tabular}
138
  \end{frame}
139

    
140
%%%%%%%%%%%%%%%%%%%%%%%%%%%
141

    
142
\begin{frame}
143
  \frametitle{Introduction}
144
 
145
$$  \mbox{"\textit{$f$ is provably total in system} XXX"} \Leftrightarrow \quad f \in \mbox{ complexity class YYY }$$
146
 
147
\bigskip 
148

    
149
 \begin{tabular}{l|l}
150
 \BA{Bounded arithmetic}  \qquad \qquad & \ICC{Implicit computational complexity}\\
151
 \hline
152
 &\\
153
  Buss ($S_2$): & Leivant (intrinsic theories): \\
154
  $\forall x, {\exists y } . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\
155
  &\\
156
  FP, FPH & FP
157
  \end{tabular}
158
  \end{frame}
159
  
160
  %%%%%%%%%%%%%%%%%%%%%%%%%%%
161

    
162
\begin{frame}
163
  \frametitle{{A current limitation of ICC logics}}
164
 
165
 \begin{itemize}
166
\item fewer complexity classes characterized by {\ICC{ICC logics}} than by {\BA{bounded arithmetic}}
167
\item in particular, {\ICC{ICC logics}}  not so satisfactory for non-deterministic classes
168

    
169
e.g. NP, PH (polynomial hierarchy) \dots
170

    
171
 \end{itemize}
172
 \end{frame}
173
 
174
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
175

    
176
\begin{frame}
177
  \frametitle{Recap : the polynomial hierarchy}
178
 
179
 \begin{itemize}
180
\item  NP: polynomially checkable with polysize witness
181

    
182
$NP=\Sigma_1^P$ example: $k$-CLIQUE
183

    
184
$$\exists^{|s_1|\leq k } s_1, (|s_1|=k \cand \mbox{CLIQUE}(s_1,x))$$
185
\item  $\Sigma_2^P$ example: $k$-MAXCLIQUE
186
\end{itemize}
187
$$ \begin{array}{l}
188
 \exists^{|s_1|\leq k } s_1, \forall^{|s_2|\leq k+1 } s_2,\\
189
  (|s_1|=k \cand \mbox{CLIQUE}(s_1,x) \cand (s_1\subsetneq s_2 \rightarrow \neg  \mbox{CLIQUE}(s_2,x))   )
190
\end{array}
191
$$
192
\begin{itemize}
193
\item  $\Sigma_i^P$:
194
$$
195
 \exists^{|s_1|\leq P_1(x) } s_1, \forall^{|s_2|\leq P_2(x) } s_2, \dots  Q^{|s_i|\leq P_i(x) } s_i, 
196
  \mbox{Pred}(\vec s, x)$$
197
  for Pred a Ptime predicate.
198
\end{itemize}
199
 \end{frame}
200

    
201

    
202
\begin{frame}
203
  \frametitle{Recap : the polynomial hierarchy}
204
 
205
 \begin{itemize}
206
\item polynomial hierarchy: 
207
$$ \mbox{PH}= \cup_i \Sigma_i^P$$
208
\item functional version:
209
\begin{eqnarray*}
210
  \fphi{i} &=& \mbox{FP}^{\Sigma_{i-1}^P}\\
211
  \mbox{FPH} &=& \cup_i   \fphi{i} 
212
  \end{eqnarray*}
213
  \end{itemize}
214

    
215
in particular:
216

    
217
 $\fphi{1}=\mbox{FP}, \qquad \fphi{2}=\mbox{FP}^{\mbox{NP}}$.
218
\end{frame}
219
%%%%%%%%%%%%%%%%%%%%%%%%%%%
220

    
221
\begin{frame}
222
  \frametitle{Our goal}
223
 
224
 design an {\ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH
225
 
226
 \medskip 
227
 
228
 expected benefits:
229
 \begin{itemize}
230
\item   bridge  {\BA{bounded arithmetic}}  and {\ICC{ICC logics}}
231
\item enlarge the toolbox  of {\ICC{ICC logics}}, by exploring the power of quantification (under-investigated in ICC)
232
\end{itemize}
233
 \end{frame}
234

    
235
%%%%%%%%%%%%%%%%%%%%%%%%%%%
236

    
237
\begin{frame}
238
  \frametitle{Methodology}
239
 
240
 We want to use:
241
 \begin{itemize}
242
\item {\ICC{ramification}} (distinction safe / normal arguments) from   {\ICC{ICC}}
243
   \item induction calibrated by logical complexity (quantifiers), from  {\BA{bounded arithmetic}}
244
%   \item our \textit{key idea}:
245
%   
246
%   trade{ \BA{bounded quantifiers $\forall x \leq t$,  $\exists x \leq t$ of bounded arithmetic}}
247
%   
248
%   for {\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$,  $\exists^{\safe} x$ in a ramified arithmetic}}
249
\end{itemize}
250
 \end{frame}
251

    
252
%%%%%%%%%%%%%%%%%%%%%%%%%%%
253

    
254
\begin{frame}
255
  \frametitle{Ramification}
256
 
257
 \begin{itemize}
258
\item   ramification, a.k.a. tiering, safe recursion
259
\item distinguish two levels of data-types:
260

    
261
${\red{N_1}}$ (\textit{normal}) integers can trigger induction/recursion
262

    
263
${{N_0}}$ (\textit{safe})  integers cannot; they can just be finitely explored
264

    
265
%\smallskip
266

    
267
\item BC function algebra (Bellantoni-Cook 92):
268

    
269
 $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
270

    
271
 safe recursion scheme:
272
$$ f({\red{\succ{i} u, \vec v}}{\textbf ;} \vec x)=F_i ({\red{u,\vec v}}{\textbf ; }f(u, \vec v;\vec x), \vec x)$$
273
\item function algebra for FP: Bellantoni-Cook 92, Leivant 93
274

    
275
          logic for FP: Leivant 95, Cantini 02, Bellantoni-Hofmann 02 
276
\end{itemize}
277
 \end{frame}
278
%%%%%%%%%%%%%%%%%%%%%%%%%%%
279

    
280
\begin{frame}
281
  \frametitle{Methodology: our key idea}
282
 
283
% We want to use:
284
 \begin{itemize}
285
%\item {\ICC{ramification}} (distinction safe / normal arguments) from   {\ICC{ICC}}
286
%   \item induction calibrated by logical complexity (quantifiers), from  {\BA{bounded arithmetic}}
287
%   \item our \textit{key idea}:
288
   
289
\item   trade
290
   
291
    { \BA{bounded quantifiers $\forall x \leq t$,  $\exists x \leq t$ of bounded arithmetic}}
292
   
293
   for
294
   
295
    {\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$,  $\exists^{\safe} x$ in a ramified arithmetic}}
296
\item calibrate the arithmetic by considering the number of ({\ICC{safe}}) quantifier alternations in induction formulas $A$, as in 
297
{\BA{bounded arithmetic}}
298
\end{itemize}
299
 \end{frame}
300

    
301
%%%%%%%%%%%%%%%%%%%%%%%%%%%
302
\begin{frame}
303
  \frametitle{Ingredients for a logical characterization}
304
 
305
 \begin{itemize}
306
\item  choose a way to \textit{specify} functions
307
\item choose a logic:
308

    
309
logical system + axioms, induction scheme
310
\item prove soundness:
311

    
312
realizability-like argument, with a well-chosen \textit{target language}
313
\item prove completeness
314
\end{itemize}
315
 \end{frame}
316

    
317
%%%%%%%%%%%%%%%%%%%%%%%%%%%
318

    
319
\begin{frame}
320
  \frametitle{Specifying the functions}
321
 
322
 Various approaches at hand to specify a function $f$ in a logic:
323
 \begin{itemize}
324
\item   {\BA{formula specification}} (bounded arithmetic):
325

    
326
a formula $A_f$ defines the graph of $f$
327
\item {\ICC{equational specification}} (Leivant: intrinsic theories)
328

    
329
conjunction of first-order equations defining $f$
330

    
331
\item combinatory terms (applicative theories: Feferman, Cantini, Kahle-Oitavem \dots)
332

    
333
terms of combinatory algebra computing $f$
334
\item \dots
335

    
336
\end{itemize}
337
 \end{frame}
338

    
339
\begin{frame}
340
  \frametitle{Our logical system}
341
 
342
 Ramified classical arithmetic (\RC):
343
 \begin{itemize}
344
\item  1st-order classical logic \dots
345
\item \dots over the language:
346
\begin{itemize}
347
 \item functions and constants: $0, \succ, +, \cdot, \smsh, |.|$
348
 \item predicates: $\leq, {\ICC{N_0}},  {\ICC{N_1}}$
349
\end{itemize}
350
\item with axioms:
351
 \begin{itemize}
352
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_2$, but sorted)
353
\smallskip
354

    
355
notation:
356

    
357
$\begin{array}{lcl}
358
\succ{0}x &:=& 2\cdot x\\
359
\succ{1}x & :=& \succ{}(2\cdot x)
360
\end{array}
361
 $
362
      \item polynomial induction IND:
363
 \end{itemize}
364
 \end{itemize}
365
 {\small $$    A(0) 
366
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{0} x) ) )
367
\rightarrow  (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{1} x) ) ) 
368
\rightarrow  \forall x^{\normal} . A(x) $$
369
   }
370
   
371
   Define all that within a sequent calculus system.
372
   
373
  $\mathcal{C}$-\RC\  is \RC\ with IND restricted to formulas $A$ belonging to the class  $\mathcal{C}$ of formulas.
374
 \end{frame}
375

    
376
%%%%%%%%%%%%%%%%%%%%%%%%%%%
377

    
378
\begin{frame}
379
  \frametitle{Classification of quantifications}
380
 
381
% Write $Q$ for $\forall$ or $\exists$.
382
 \begin{itemize}
383
\item   safe ($N_0$) quantifiers:
384
\begin{eqnarray*}
385
\forall^{N_0}x.A &:=& \forall x.(N_0(x) \rightarrow A)\\
386
\exists^{N_0}x.A &:=& \exists x.(N_0(x) \cand A)
387
\end{eqnarray*}
388
\item sharply bounded normal ($\normal$) quantifiers:
389
\begin{eqnarray*}
390
\forall^{N_1}x\leq |t| .A &:=& \forall x.(N_1(x) \rightarrow (x\leq |t|) \rightarrow A)\\
391
\exists^{N_1}x\leq |t| .A &:=& \exists x.(N_1(x) \cand(x\leq |t|) \cand A)
392
\end{eqnarray*}
393
%$$Q^{N_i}x\leq |t|.\; A := Qx.(N_i(x) \rightarrow (x\leq |t|) \rightarrow A)$$
394
\end{itemize}
395
 \end{frame}
396

    
397
%%%%%%%%%%%
398
\begin{frame}
399
  \frametitle{Quantifier hierarchy}
400
 
401
 We define:
402
 \begin{itemize}
403
\item $\Sigma^\safe_0 = \Pi^\safe_0 $= formulas with only sharply bounded quantifiers,
404
\item $\Sigma^\safe_{i+1}$= closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers,
405
\item  $\Pi^\safe_{i+1}$ = closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers,
406
\item $\Sigma^\safe= \cup_i \Sigma^\safe_i$.
407
\end{itemize}
408
\end{frame}
409

    
410
%%%%%%%%%%%%%%%%%%%%%%%%%%%
411

    
412
\begin{frame}
413
  \frametitle{Result and work-in-progress}
414
 
415
 \begin{claim}[Soundness]
416
  If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
417
 \end{claim}
418
 
419
  \begin{claim}[Completeness]
420
  If $f$ $f$ belongs to $\fphi{i}$ then $f$ is provably total in \RCi\ .
421
 \end{claim}
422

    
423
\end{frame}
424

    
425
%%%%%%%%%%%%%%%%%%%%%%%%%%%
426

    
427
\begin{frame}
428
  \frametitle{Proof idea for soundness: target language $\mu$BC}
429
 
430
 \begin{itemize}
431
\item   target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH
432
\item BC algebra:  $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
433
\begin{itemize}
434
  \item initial functions: $p$, $\pi^n_i$, \dots
435
  \item safe recursion
436
  \item safe composition
437
\end{itemize}
438

    
439
BC characterizes the class FP (Bellantoni-Cook 92).
440
%\item $\mu$BC: extends BC with \textit{predicative minimization}
441
%
442
%$f({\red{\vec u}}; \vec x):= \begin{cases}
443
% s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if  there exists such a $y$,} \\
444
%0  & \mbox{ otherwise,}
445
%\end{cases}
446
%$
447
%
448
% $\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization
449
\end{itemize}
450
 \end{frame}
451

    
452
%%%%%%%%%%%%%%%%%%%%%%%%%%%
453

    
454
\begin{frame}
455
  \frametitle{Proof idea for soundness: target language $\mu$BC}
456
 
457
 \begin{itemize}
458
%\item   target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH
459
%\item BC algebra:  $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
460
%\begin{itemize}
461
%  \item initial functions: $p$, $\pi^n_i$, \dots
462
%  \item safe recursion
463
%  \item safe composition
464
%\end{itemize}
465
%
466
%BC characterizes the class FP (Bellantoni-Cook 92).
467
\item $\mu$BC: extends BC with \textit{predicative minimization}
468

    
469
$f({\red{\vec u}}; \vec x):= \begin{cases}
470
 s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if  there exists such a $y$,} \\
471
0  & \mbox{ otherwise,}
472
\end{cases}
473
$
474

    
475
 $\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization
476
 \item one obtains
477
 
478
 \begin{theorem}[Bellantoni 92]
479
 
480
 The functions of $\mu$BC are exactly those of FPH.
481
 
482
 The functions of  $\mu \mbox{BC}^{\; i-1}$ are exactly those of $\fphi{i}$.
483
 \end{theorem}
484
\end{itemize}
485
 \end{frame}
486

    
487

    
488
%%%%%%%%%%%%%%%%%%%%%%%%%%%
489

    
490
\begin{frame}
491
  \frametitle{Proving soundness}
492
 
493
 Key intermediary property to prove:
494
 \begin{claim}
495
 If \RCi\ proves
496
 $$\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$$
497
  then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that 
498
  $$\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x)).$$
499
\end{claim}
500
 Proof idea: use witness function method:
501
 \begin{itemize}
502
  \item use free-cut elimination theorem for the sequent calculus
503
  \item then prove the property by induction on sequent calculus rules
504
 \end{itemize}
505
  \end{frame}
506

    
507

    
508
%%%%%%%%%%%%%%%%%%%%%%%%%%%
509

    
510
\begin{frame}
511
  \frametitle{Proving completeness: in progress}
512
 
513
 Key intermediary claim:
514
 \begin{claim}
515
	\label{thm:completeness}
516
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that \RCi\  proves $$\forall^{\normal} \vec u  . \forall^{\safe} \vec x. \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$$ and $$\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x)).$$
517
\end{claim}
518

    
519
For the minimization construction case, we use \textit{well-ordering property} in \RCi\  .
520
 \end{frame}
521

    
522
%%%%%%%%%%%%%%%%%%%%%%%%%%%
523

    
524
\begin{frame}
525
  \frametitle{Related works}
526
 
527
 Two previous results \textit{apparently} clash with our claims:
528
 \begin{itemize}
529
\item   Bellantoni-Hofmann 02:
530

    
531
characterization of FP, with induction on arbitrarily quantified formulas
532

    
533
but \dots the underlying logic is not classical logic, but linear logic
534

    
535
\item   Cantini 02:
536

    
537
characterization of FP in a ramified classical logic, with induction on arbitrarily quantified formulas $A$
538

    
539
but \dots occurrences of $\safe$ in $A$ need to be positive, hence it corresponds to our $\Sigma^{\safe}_1$.
540
 \end{itemize}
541
 \end{frame}
542

    
543
%%%%%%%%%%%%%%%%%%%%%%%%%%%
544

    
545
\begin{frame}
546
  \frametitle{Conclusion and perspectives}
547
 
548
 \begin{itemize}
549
\item   we defined a ramified arithmetic with unbounded quantification which we claim is FPH sound, and  FPH complete
550
\item this yields an implicit analog of Buss' bounded arithmetic $S_2$, with a characterization of each level  $\fphi{i}$,  %by calibrating induction with quantifier alternation, 
551
but where {\BA{bounded quantification}} has been replaced by {\ICC{safe quantification}}
552
\item  could \RC\ be presented as a modal logic (as in  Bellantoni-Hofmann02) ?
553
\item we think that \RCi\  can be directly embedded into the bounded arithmetic $S^i_2$
554
%study direct relationship of \RC\ with the bounded arithmetic $S_2$
555
\end{itemize}
556
 \end{frame}
557

    
558
\end{document}
559

    
560
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
561
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
562
%----------
563

    
564
%%%%%%%%%%%%%%%%%%%%%%%%%%%
565

    
566
\begin{frame}
567
  \frametitle{}
568
 
569
 \begin{itemize}
570
\item   \end{itemize}
571
 \end{frame}
572

    
573
%%%%%%%%%%%%%%%%%%%%%%%%%%%