Révision 242 CSL17/preliminaries.tex
preliminaries.tex (revision 242) | ||
---|---|---|
153 | 153 |
%\item $\bit(l;x)$ returns the $\mode l$th bit of $x$. |
154 | 154 |
\item We can define the function $\bit(l;x)$ which returns the $|l|$th least significant bit of $x$. For instance $\bit(11;1011)=0$. |
155 | 155 |
|
156 |
For that let us first define the function $\shorten(l;x)$ which returns the $|x|- |l|$ prefix of $x$, as follows: |
|
156 |
For that let us first define the function $\shorten(l;x)$ which returns the $|x|- |l|+1$ prefix of $x$, as follows:
|
|
157 | 157 |
\begin{eqnarray*} |
158 |
\shorten(\epsilon;x) &=&x\\
|
|
158 |
\shorten(0;x) &=&x\\
|
|
159 | 159 |
\shorten(\succ{i}l;x) &=&p(;\shorten(l;x)) |
160 | 160 |
\end{eqnarray*} |
161 | 161 |
Then we define $\bit(l;x)$ as follows: |
162 |
$$\bit(l;x)=C(;\shorten(pl;x),\epsilon,0,1).$$
|
|
162 |
$$\bit(l;x)=C(;\shorten(l;x),0,1).$$
|
|
163 | 163 |
\end{itemize} |
164 | 164 |
\end{example} |
165 | 165 |
|
Formats disponibles : Unified diff