Révision 242 CSL17/preliminaries.tex

preliminaries.tex (revision 242)
153 153
	%\item $\bit(l;x)$ returns the $\mode l$th bit of $x$.
154 154
	\item We can define the function $\bit(l;x)$ which returns the $|l|$th least significant bit of $x$. For instance $\bit(11;1011)=0$.
155 155
	
156
	For that let us first define the function $\shorten(l;x)$ which returns the $|x|- |l|$ prefix of $x$, as follows:
156
	For that let us first define the function $\shorten(l;x)$ which returns the $|x|- |l|+1$ prefix of $x$, as follows:
157 157
	\begin{eqnarray*}
158
	\shorten(\epsilon;x) &=&x\\
158
	\shorten(0;x) &=&x\\
159 159
	\shorten(\succ{i}l;x) &=&p(;\shorten(l;x))
160 160
	\end{eqnarray*}
161 161
	Then we define $\bit(l;x)$  as follows:
162
	$$\bit(l;x)=C(;\shorten(pl;x),\epsilon,0,1).$$ 
162
	$$\bit(l;x)=C(;\shorten(l;x),0,1).$$ 
163 163
	\end{itemize}
164 164
	\end{example}
165 165

  

Formats disponibles : Unified diff