Statistiques
| Révision :

root / CSL17 / soundness.tex @ 241

Historique | Voir | Annoter | Télécharger (9,13 ko)

1
\section{Soundness}
2
\label{sect:soundness}
3
In this section we show that the representable functions of our theories $\arith^i$ are in $\fphi i$ (`soundness').
4
The main result is the following:
5

    
6
\begin{theorem}
7
	\label{thm:soundness}
8
	If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$.
9
\end{theorem}
10

    
11

    
12

    
13
The problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions, Lemma~\ref{lem:polychecking}. 
14
For this we will use \emph{length-bounded} witnessing argument, borrowing a similar idea from Bellantoni's work \cite{Bellantoni95}.
15

    
16

    
17
\begin{definition}
18
[Length bounded (in)equality]
19
%We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate:
20
%\[
21
%x \mode l = y \mode l
22
%\]
23
%which is definable by safe recursion on $l$:
24
%\[
25
%\begin{array}{rcl}
26
%\eq (0 ; x,y) & \dfn & \equivfn (;\bit (0;x),\bit(0;y) ) \\
27
%\eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y ))  )
28
%\end{array}
29
%\]
30
We define \emph{length-bounded inequality} as:
31
\[
32
\begin{array}{rcl}
33
\leqfn (0 ; x ,y) & \dfn & \cond(; \bit (0;x), 1, \bit (0;y) ) \\
34
\leqfn (\succ i l ; x,y) & \dfn & \orfn ( ; \cond(;\bit (\succ i l ; x) , \bit(\succ i l ; y),0 ) , \andfn (; \equivfn (\bit (\succ i l ; x) , \bit(\succ i l ; y)) , \leqfn (l;x,y ) ) )
35
\end{array}
36
\]
37
\end{definition}
38

    
39
Notice that $\leqfn (l; x,y) = 1$ just if $x \mode l \leq y \mode l$.
40
We can also define $\eq( l; x,y)$ as $\andfn (;\leq(l;x,y),\leq(l;y,x))$.
41

    
42
%\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.}
43
%
44
%Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems.
45

    
46

    
47
In the presence of a compatible sorting, we may easily define functions that \emph{evaluate} safe formulae in $\mubc$:
48

    
49

    
50
\begin{proposition}
51
Given a $\Sigma^\safe_i$ formula $A$ and compatible sorting $(\vec u; \vec x)$ of its variables, there is a $\mubci{i-1}$ program $\charfn{\vec u ;\vec x}{A} (l, \vec u ; \vec x)$ computing the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$.
52
\end{proposition}
53

    
54

    
55
We will use the programs $\charfn{}{}$ in the witness functions we define below.
56
Let us write $\charfn{}{i}$ to denote the class of functions $\charfn{}{A}$ for $A \in \Pi^\safe_{i-1}$.
57
For the notion of bounding polynomial below we are a little informal with bounds, using `big-oh' notation, since it will suffice just to be `sufficiently large'.
58
Notice that, while we refer to $b_A(l), p(l)$ etc.\ below as a `polynomial', we really mean a \emph{quasipolynomial} (which may also contain $\smsh$), i.e.\ a polynomial in the \emph{length} of $l$, as a slight abuse of notation.
59

    
60

    
61
\begin{definition}
62
	[Length bounded witness function]
63
	For a $\Sigma^\safe_{i}$ formula $A$ with a compatible sorting $(\vec u ; \vec x)$, we define the \emph{length-bounded witness function} $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w)$ in $\bc (\charfn{}{i})$ and its \emph{bounding polynomial} $b_A (l)$ as follows:
64
	\begin{itemize}
65
		\item If $A$ is $\Pi^\safe_{i-1}$ then $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) \dfn \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x )$ and we set $b_A (l) = 1$.
66
		\item If $A$ is $B \cor C$ then we may set $b_A = O(b_B + b_C)$ and define $		\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) \dfn		\orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )$.
67
%		\[
68
%		\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) 
69
%		\quad \dfn \quad
70
%		\orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )
71
%		\]
72
%		and we may set $b_A = O(b_B + b_C)$.
73
		\item Similarly if $A $ is $B \cand C$, but with $\andfn$ in place of $\orfn$.
74
%		\item If $A$ is $B \cand C$ then
75
%			\[
76
%			\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) 
77
%			\quad \dfn \quad
78
%			\andfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )
79
%			\]
80
%			and we may set $b_A = O(b_B + b_C)$.
81
		\item If $A$ is $\forall u \leq |t(\vec u;)| . B(u)$ we appeal to sharply bounded closure, Lemma~\ref{lem:sharply-bounded-recursion}, to define
82
		\(
83
		\wit{\vec u ; \vec x}{A}
84
		 \dfn
85
		\forall u \leq |t|.
86
		\wit{u, \vec u ; \vec x}{B(u)} (l, u, \vec u ; \vec x , \beta( b_{B(t)} (l) , u ; w ) )
87
		\)
88
		%appealing to Lemma~\ref{lem:sharply-bounded-recursion}, 
89
		and 
90
		we set 
91
		$b_A = O(b_{B(t)}^2 )$.
92
		\item Similarly if $A$ is $\exists u^\normal \leq |t(\vec u;)|. A'(u)$, but with $\exists u \leq |t|$ in place of $\forall u \leq |t|$.
93
		\item If $A$ is $\exists x^\safe . B(x) $ then
94
		\(
95
		\wit{\vec u ; \vec x}{A}
96
		\dfn 
97
		\wit{\vec u ; \vec x , x}{B(x)} ( l, \vec u ; \vec x , \beta( b_{B} (l) , 0;w ) , \beta (q(l) , 1 ;w ))
98
		\)
99
		where $q$ is obtained by the polychecking and bounded minimisation properties, Lemmas~\ref{lem:polychecking} and \ref{lem:bounded-minimisation}, for $\wit{\vec u ; \vec x , x}{B(x)}$.
100
		We may set $b_A = O(b_B + q )$.
101
	\end{itemize}
102
%	\[
103
%	\begin{array}{rcl}
104
%	\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
105
%	\smallskip
106
%	\wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
107
%	\smallskip
108
%	\wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
109
%	\smallskip
110
%	\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w )
111
%	\\
112
%	\smallskip
113
%	\wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & 
114
%	\forall u \leq |t(\vec u;)| . \wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) )
115
%	\end{array}
116
%	\]
117
%	\anupam{need length bounding for sharply bounded quantifiers}
118
\end{definition}
119

    
120

    
121

    
122
\begin{proposition}
123
	\label{prop:wit-rfn}
124
	If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A (\vec u \mode l ; \vec x \mode l)$ is true.
125
Conversely, if $A (\vec u \mode l ; \vec x \mode l)$ is true then there is some $w \leq b_A(l)$ such that $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$.
126
\end{proposition}
127

    
128

    
129
In order to prove Thm.~\ref{thm:soundness} we need the following lemma, essentially giving an interpretation of $\arith^i$ proofs into $\mubci{i-1}$:
130

    
131

    
132
\begin{lemma}
133
		[Proof interpretation]
134
		\label{lem:proof-interp}
135
	From a typed-variable normal form $\arith^i$ proof $\pi$ of a $\Sigma^\safe_i$ sequent $\normal(\vec u), \safe(\vec x) , \Gamma  \seqar \Delta$
136
	there are $\bc (\charfn{}{i})$ functions $ f^\pi_B (\vec u ; \vec x , w)$ for $B\in\Delta$ such that
137
	% such that, for any $l, \vec u ; \vec x  , w$, we have:
138
	\[
139
%	\vec a^\nu = \vec u ,
140
%	\vec b^\sigma = \vec u, 
141
%	\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1
142
%	\ \implies \
143
%	\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1
144
	\begin{array}{rl}
145
&	\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A \mode b_A(l)) =1 \\
146
\noalign{\medskip}
147
\implies & 	\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1
148
	\end{array}
149
	\]
150
	for some polynomial $p$.
151
%	\anupam{Need $\vec w \mode p(l)$ for some $p$.}
152
%	\anupam{$l$ may occur freely in the programs $f^\pi_B$}
153
\end{lemma}
154

    
155

    
156

    
157

    
158
Now we can prove the soundness result:
159
	
160
	\begin{proof}
161
		[Proof sketch of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
162
		Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\safe . A(\vec u ; x)$. By inversion and Thm.~\ref{thm:normal-form} there is a $\arith^i$ proof $\pi$ of $\normal (\vec u ) \seqar \exists x^\safe. A(\vec u ; x )$ in typed variable normal form.
163
By Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f^\pi$ with $\wit{\vec u ;}{\exists x^\safe . A} (l, \vec u ; f(\vec u \mode l;)) =1$.
164
By the definition of $\wit{}{}$ and Prop.~\ref{prop:wit-rfn} we have that $\exists x . A(\vec u \mode l; x)$ is true just if $A(\vec u \mode l ; \beta (q(l), 1 ; f(\vec u \mode l;) ))$ is true.
165
Now, since all $\vec u$ are normal, we may simply set $l$ to have a longer length than all of these arguments, so the function $f(\vec u;) \dfn \beta (q(\sum \vec u), 1 ; f(\vec u \mode \sum \vec u;) ))$ suffices to finish the proof.
166
	\end{proof}