Révision 241
CSL17/arithmetic.tex (revision 241) | ||
---|---|---|
123 | 123 |
|
124 | 124 |
|
125 | 125 |
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions} |
126 |
%Todo: $+1$, |
|
127 | 126 |
|
128 | 127 |
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall \vec u^{\normal} , \forall x^{\safe}, \exists! y^{\safe}. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$. |
129 | 128 |
|
130 | 129 |
Let us give a few examples for basic functions representable in $\arith^1$, wherein proofs of totality are routine: |
131 | 130 |
\begin{itemize} |
132 |
\item Projection $\pi_k^{m,n}$: $\forall u_1^{\normal} , \dots, u_m^{\normal} , \forall x_{m+1}^{\safe} , \dots, x^{\safe} _{m+n}, \exists y^{\safe} . y=x_k$. |
|
131 |
\item Projection $\pi_k^{m,n}$: $\forall u_1^{\normal} , \dots, u_m^{\normal} , \forall x_{m+1}^{\safe} , \dots, x^{\safe} _{m+n}, \exists y^{\safe} . y=x_k$ if $k\geq m+1$ (resp. $u_k$ if $k\leq m$).
|
|
133 | 132 |
%\item Successor $\succ{}$: $\forall x^{\safe} , \exists^{\safe} y. y=x+1.$. The formulas for the binary successors $\succ{0}$, $\succ{1}$ and the constant functions $\epsilon^k$ are defined in a similar way. |
134 | 133 |
%\item Predecessor $p$: $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$ |
135 | 134 |
\item Conditional $C$: |
136 | 135 |
$$\begin{array}{ll} |
137 |
\forall x^{\safe} , y_{\epsilon}, y_0, y_1, \exists^{\safe} y. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
|
|
138 |
& \cor( \exists^{\safe}z.(x=\succ{0}z) \cand (y=y_0))\\
|
|
139 |
& \cor( \exists^{\safe}z.(x=\succ{1}z) \cand (y=y_1)))\
|
|
136 |
\forall x^{\safe} , y_{\epsilon}^{\safe}, y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
|
|
137 |
& \cor( \exists z^{\safe}.(x=\succ{0}z) \cand (y=y_0))\\
|
|
138 |
& \cor( \exists z^{\safe}.(x=\succ{1}z) \cand (y=y_1)))\
|
|
140 | 139 |
\end{array} |
141 | 140 |
$$ |
142 | 141 |
%\item Addition: |
... | ... | |
145 | 144 |
This is a predicate that we will need for technical reasons, in the completeness proof. The predicate $\pref(k,x,y)$ holds if the prefix of string $x$ |
146 | 145 |
of length $k$ is $y$. It is defined as: |
147 | 146 |
$$\begin{array}{ll} |
148 |
\exists^{\safe} z, \exists^{\normal} l\leq |x|. & (k+l= |x|\\
|
|
147 |
\exists z^{\safe} , \exists l^{\normal} \leq |x|. & (k+l= |x|\\
|
|
149 | 148 |
& \cand \; |z|=l\\ |
150 | 149 |
& \cand \; x=y\smsh(2,l)+z) |
151 | 150 |
\end{array} |
... | ... | |
154 | 153 |
|
155 | 154 |
$\zerobit(x,k)$ (resp. $\onebit(x,k)$) holds iff the $k$th bit of $x$ is 0 (resp. 1). The predicate $\zerobit(x,k)$ for instance can be |
156 | 155 |
defined by: |
157 |
$$ \exists^{\safe} y.(\pref(k,x,y) \cand \exists^{\safe} z. y=\succ{0}z).$$ |
|
158 |
%$$ \exists^{\safe} y.(\pref(k,x,y) \cand C(y,0,1,0)).$$ |
|
156 |
$$ \exists y^{\safe} .(\pref(k,x,y) \cand \exists z^{\safe} . y=\succ{0}z).$$ |
|
159 | 157 |
\end{itemize} |
160 | 158 |
|
161 | 159 |
\subsection{A sequent calculus presentation} |
Formats disponibles : Unified diff