Révision 241

CSL17/arithmetic.tex (revision 241)
123 123

  
124 124

  
125 125
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
126
%Todo: $+1$,  
127 126

  
128 127
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall \vec u^{\normal} , \forall  x^{\safe}, \exists! y^{\safe}. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$.
129 128
 
130 129
Let us give a few examples for basic functions representable in $\arith^1$, wherein proofs of totality are routine:
131 130
\begin{itemize}
132
\item Projection $\pi_k^{m,n}$: $\forall u_1^{\normal} , \dots, u_m^{\normal} ,  \forall x_{m+1}^{\safe} , \dots, x^{\safe} _{m+n}, \exists y^{\safe} . y=x_k$.
131
\item Projection $\pi_k^{m,n}$: $\forall u_1^{\normal} , \dots, u_m^{\normal} ,  \forall x_{m+1}^{\safe} , \dots, x^{\safe} _{m+n}, \exists y^{\safe} . y=x_k$ if $k\geq m+1$ (resp. $u_k$ if $k\leq m$).
133 132
%\item Successor $\succ{}$: $\forall x^{\safe} , \exists^{\safe} y. y=x+1.$. The formulas for the binary successors $\succ{0}$, $\succ{1}$ and the constant functions $\epsilon^k$ are defined in a similar way.
134 133
%\item Predecessor $p$:   $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$
135 134
\item Conditional $C$: 
136 135
$$\begin{array}{ll}
137
\forall x^{\safe} , y_{\epsilon}, y_0, y_1, \exists^{\safe} y. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
138
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{0}z) \cand (y=y_0))\\
139
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{1}z) \cand (y=y_1)))\
136
\forall x^{\safe} , y_{\epsilon}^{\safe}, y_0^{\safe}, y_1^{\safe}, \exists y^{\safe}. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
137
                                                                                                   & \cor( \exists z^{\safe}.(x=\succ{0}z) \cand (y=y_0))\\
138
                                                                                                   & \cor( \exists z^{\safe}.(x=\succ{1}z) \cand (y=y_1)))\
140 139
\end{array}
141 140
$$
142 141
%\item Addition:
......
145 144
  This is a predicate that we will need for technical reasons, in the completeness proof. The predicate $\pref(k,x,y)$ holds if the prefix of string $x$
146 145
  of length $k$ is $y$. It is defined as:
147 146
  $$\begin{array}{ll}
148
\exists^{\safe} z, \exists^{\normal} l\leq |x|. & (k+l= |x|\\
147
\exists z^{\safe} , \exists l^{\normal} \leq |x|. & (k+l= |x|\\
149 148
                                                                                                   & \cand \; |z|=l\\
150 149
                                                                                                   & \cand \; x=y\smsh(2,l)+z)
151 150
                                                                                                   \end{array}
......
154 153

  
155 154
$\zerobit(x,k)$ (resp. $\onebit(x,k)$) holds iff the $k$th bit of $x$ is 0 (resp. 1). The predicate $\zerobit(x,k)$  for instance can be
156 155
defined by:
157
$$ \exists^{\safe} y.(\pref(k,x,y) \cand \exists^{\safe} z. y=\succ{0}z).$$
158
%$$ \exists^{\safe} y.(\pref(k,x,y) \cand C(y,0,1,0)).$$
156
$$ \exists y^{\safe} .(\pref(k,x,y) \cand \exists z^{\safe} . y=\succ{0}z).$$
159 157
\end{itemize}
160 158

  
161 159
\subsection{A sequent calculus presentation}

Formats disponibles : Unified diff