root / CSL16 / appendix-bc-convergence.tex @ 239
Historique | Voir | Annoter | Télécharger (5,18 ko)
1 | 113 | adas | \section{Further proof details for Thm.~\ref{thm:arith-proves-bc-conv}, Sect.~\ref{sect:bc-convergence}} |
---|---|---|---|
2 | 105 | adas | \label{sect:app-bc-conv} |
3 | 113 | adas | |
4 | 113 | adas | For derivation \eqref{eqn:prn-cvg-base} $\alpha$ is, |
5 | 105 | adas | \[ |
6 | 105 | adas | \vlderivation{ |
7 | 105 | adas | % \vliin{\cut}{}{ \word (\vec x) \seqar \word ( g (\vec v ; \vec x)) }{ |
8 | 105 | adas | % \vlin{\rigrul{!}}{}{\seqar !\word (v)}{ |
9 | 105 | adas | % \vlin{assump}{}{\seqar \word (\vec v)}{\vlhy{}} |
10 | 105 | adas | % } |
11 | 105 | adas | % }{ |
12 | 105 | adas | \vliin{\cut}{}{ !\word (\vec v ) , \word (\vec x) \seqar \word (g (\vec v ; \vec x )) }{ |
13 | 105 | adas | \vlhy{\seqar \forall \vec v^{!\word} . \forall \vec x^\word . \word (g (\vec v ; \vec x)) } |
14 | 105 | adas | }{ |
15 | 105 | adas | \vliq{\lefrul{\forall}}{ }{ !\word (\vec v) , \word (\vec x) , \forall \vec v^{!\word} . \forall \vec x^\word \word (g(\vec v ; \vec x )) \seqar \word (g(\vec v ; \vec x )) }{ |
16 | 105 | adas | \vlin{\id}{}{\word (g(\vec v ; \vec x )) \seqar \word (g(\vec v ; \vec x ))}{\vlhy{}} |
17 | 105 | adas | } |
18 | 105 | adas | } |
19 | 105 | adas | % } |
20 | 105 | adas | } |
21 | 105 | adas | \] |
22 | 105 | adas | and $\beta$ is: |
23 | 105 | adas | \[ |
24 | 113 | adas | \hspace{-1em} |
25 | 113 | adas | \small |
26 | 105 | adas | \vlderivation{ |
27 | 105 | adas | \vliin{\cut}{}{!\word (\vec v) , \word (\vec x) \seqar \word ( f ( \epsilon , \vec v ; \vec x ) ) }{ |
28 | 105 | adas | \vlhy{!\word (\vec v) , \word (\vec x) \seqar \word (g (\vec v ; \vec x) ) } |
29 | 105 | adas | }{ |
30 | 105 | adas | \vliin{\cut}{}{ \word (g (\vec v ; \vec x) ) \seqar \word (f (\epsilon, \vec v ; \vec x) ) }{ |
31 | 105 | adas | \vlin{\closure{\eqspec}}{}{ \seqar f(\epsilon , \vec v ; \vec x) = g(\vec v ; \vec x) }{\vlhy{}} |
32 | 105 | adas | }{ |
33 | 105 | adas | \vlin{=}{}{\word ( g(\vec v ; \vec x) ) , f(\epsilon , \vec v ; \vec x) = g(\vec v ; \vec x) \seqar \word (f (\epsilon, \vec v ; \vec x) ) }{\vlhy{}} |
34 | 105 | adas | } |
35 | 105 | adas | } |
36 | 105 | adas | } |
37 | 105 | adas | \] |
38 | 105 | adas | |
39 | 105 | adas | Suppose $f$ is defined by safe composition as follows: |
40 | 105 | adas | \[ |
41 | 105 | adas | f( \vec u ; \vec x ) |
42 | 105 | adas | \quad = \quad |
43 | 105 | adas | h( \vec g (\vec u ; ) ; \vec g' ( \vec u ; \vec x ) ) |
44 | 105 | adas | \] |
45 | 105 | adas | |
46 | 120 | adas | By the inductive hypothesis we already have proofs of the covergence of $h$ and each $g_i$ and $g_j'$. Thus we construct the required proof as follows: |
47 | 105 | adas | \[ |
48 | 113 | adas | \hspace{-1em} |
49 | 113 | adas | \tiny |
50 | 105 | adas | \vlderivation{ |
51 | 105 | adas | \vliq{\rigrul{\forall}}{}{ \seqar \forall\vec u^{!\word} . \forall \vec x^\word . \word( f(\vec u ; \vec x ) ) }{ |
52 | 105 | adas | \vliq{\beta}{}{ !\word (\vec u) , \word (\vec x) \seqar \word ( f( \vec u ; \vec x ) ) }{ |
53 | 105 | adas | \vliq{\cntr}{}{ !\word (\vec u) , \word (\vec x) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x ) ) ) }{ |
54 | 105 | adas | \vliiiq{\cut}{}{!\word (\vec u) , \dots , !\word (\vec u) , \word (\vec x) , \dots , \word (\vec x) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x ) ) ) }{ |
55 | 105 | adas | \vlhy{ |
56 | 105 | adas | \left\{ |
57 | 105 | adas | \vlderivation{ |
58 | 105 | adas | \vlin{\rigrul{!}}{}{ !\word (\vec u) \seqar !\word ( g_i (\vec u ;) ) }{ |
59 | 105 | adas | \vliq{\alpha}{}{ !\word (\vec u) \seqar \word ( g_i (\vec u ;) }{ |
60 | 105 | adas | \vltr{\IH}{ \forall \vec u^{!\word} . \word (g_i (\vec u ;) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
61 | 105 | adas | } |
62 | 105 | adas | } |
63 | 105 | adas | } |
64 | 105 | adas | \right\}_{i \leq |\vec g| } |
65 | 105 | adas | } |
66 | 105 | adas | }{ |
67 | 105 | adas | \vlhy{ |
68 | 105 | adas | \left\{ |
69 | 105 | adas | \vlderivation{ |
70 | 105 | adas | \vliq{\alpha}{}{ !\word ( \vec u ) , \word (\vec x) \seqar \word ( g_j' ( \vec u ; \vec x ) ) }{ |
71 | 105 | adas | \vltr{\IH}{ \seqar \forall \vec u^{!\word}. \forall \vec x^\word . \word ( g_j' (\vec u ; \vec x) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
72 | 105 | adas | } |
73 | 105 | adas | } |
74 | 105 | adas | \right\}_{j \leq |\vec g'|} |
75 | 105 | adas | } |
76 | 105 | adas | }{ |
77 | 105 | adas | \vliq{\alpha}{}{ !\word ( \vec g (\vec u ;) ) , \word ( \vec g ' ( \vec u ; \vec x ) ) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x ) ) ) ) }{ |
78 | 105 | adas | \vltr{\IH}{ \seqar \forall \vec v^{!\word} . \forall \vec y^\word . \word ( h( \vec v ; \vec y ) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
79 | 105 | adas | } |
80 | 105 | adas | } |
81 | 105 | adas | } |
82 | 105 | adas | } |
83 | 105 | adas | } |
84 | 105 | adas | } |
85 | 105 | adas | \] |
86 | 105 | adas | where $\alpha$ and $\beta$ are similar to before. |
87 | 109 | adas | |
88 | 109 | adas | |
89 | 109 | adas | We also give the case of the conditional initial function $C (; x, y_\epsilon , y_0, y_1)$, to exemplify the use of additives. |
90 | 109 | adas | %The conditional is defined equationally as: |
91 | 109 | adas | %\[ |
92 | 109 | adas | %\begin{array}{rcl} |
93 | 109 | adas | %C (; \epsilon, y_\epsilon , y_0, y_1 ) & = & y_\epsilon \\ |
94 | 109 | adas | %C(; \succ_0 x , y_\epsilon , y_0, y_1) & = & y_0 \\ |
95 | 109 | adas | %C(; \succ_1 x , y_\epsilon , y_0, y_1) & = & y_1 |
96 | 109 | adas | %\end{array} |
97 | 109 | adas | %\] |
98 | 109 | adas | Let $\vec y = ( y_\epsilon , y_0, y_1 )$ and construct the required proof as follows: |
99 | 109 | adas | \[ |
100 | 109 | adas | \small |
101 | 109 | adas | \vlderivation{ |
102 | 109 | adas | \vliq{}{}{ \word (x) , \word (\vec y) \seqar \word ( C(; x ,\vec y) )}{ |
103 | 113 | adas | \vlin{2\cdot \laor}{}{ x = \epsilon \laor \exists z^\word . x = \succ_0 z \laor \exists z^\word x = \succ_1 z , \word (\vec y) \seqar \word ( C(;x \vec y) ) }{ \vlhy{ |
104 | 113 | adas | \vlderivation{ |
105 | 109 | adas | \vliq{}{}{ x = \epsilon , \word (\vec y) \seqar \word ( C(; x , \vec y) ) }{ |
106 | 113 | adas | \vliq{}{}{ \word (\vec y) \seqar \word ( C( ; \epsilon , \vec y ) ) }{ |
107 | 113 | adas | \vlin{\wk}{}{ \word (\vec y) \seqar \word (y_\epsilon) }{ |
108 | 113 | adas | \vlin{\id}{}{\word (y_\epsilon) \seqar \word ( y_\epsilon )}{\vlhy{}} |
109 | 113 | adas | } |
110 | 113 | adas | } |
111 | 113 | adas | } |
112 | 109 | adas | } |
113 | 113 | adas | \qquad |
114 | 109 | adas | \left\{ |
115 | 109 | adas | \vlderivation{ |
116 | 109 | adas | \vlin{\lefrul{\exists}}{}{ \exists z^\word . x = \succ_i z , \word (\vec y) \seqar \word ( C(;x , \vec y) ) }{ |
117 | 109 | adas | \vliq{}{}{ x = \succ_i a , \word (\vec y ) \seqar \word (C(; x ,\vec y)) }{ |
118 | 109 | adas | \vliq{}{}{ \word (\vec y) \seqar \word ( C(; \succ_i a , \vec y ) ) }{ |
119 | 109 | adas | \vlin{\wk}{}{ \word (\vec y) \seqar \word (y_i) }{ |
120 | 109 | adas | \vlin{\id}{}{\word (y_i) \seqar \word (y_i)}{\vlhy{}} |
121 | 109 | adas | } |
122 | 109 | adas | } |
123 | 109 | adas | } |
124 | 109 | adas | } |
125 | 109 | adas | } |
126 | 109 | adas | \right\}_{i = 0,1} |
127 | 109 | adas | } |
128 | 109 | adas | } |
129 | 109 | adas | } |
130 | 109 | adas | } |
131 | 109 | adas | \] |
132 | 109 | adas | whence the result follows by $\forall$-introduction. |
133 | 109 | adas | %The other initial functions are routine. |