Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 237

Historique | Voir | Annoter | Télécharger (20,12 ko)

1 206 pbaillot
\section{An arithmetic for the polynomial hierarchy}\label{sect:arithmetic}
2 182 pbaillot
%Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$.
3 220 adas
Our base language consists of constant and function symbols $\{ 0, \succ{} , + , \times, \smsh , |\cdot|, \hlf{}.\}$ and predicate symbols
4 236 adas
 $\{\leq, \safe, \normal \}$. The function symbols are interpreted in the intuitive way, with $|x|$ denoting the length of $x$ seen as a binary string, and $x\smsh y$ denoting $2^{|x||y|}$, so a string of length $|x||y|+1$.
5 220 adas
 We may write $\succ{0}(x)$ for $2\cdot x$, $\succ{1}(x)$ for $\succ{}(2\cdot x)$, and $\pred (x)$ for $\hlf{x}$, to better relate to the $\bc$ setting.
6 218 pbaillot
7 220 adas
We consider formulas of classical first-order logic, over $\neg$, $\cand$, $\cor$, $\forall$, $\exists$, along with usual shorthands and abbreviations.
8 220 adas
%The formula $A \cimp B$ will be a notation for $\neg A \cor B$.
9 220 adas
%We will also use as shorthand notations:
10 220 adas
%$$ (s=t) = (s\leq t) \cand (t\leq s), \quad (s\neq t) = \neg(s=t).$$
11 220 adas
\textit{Atomic formulas} formulas are of the form $(s\leq t)$, for terms $s,t$.
12 220 adas
 We will assume, without loss of generality, that formulas are in \textit{De Morgan normal form}, that is to say that in formulas negation can only occur on atomic formulas, and that there is not any occurrence of a subformula of the form $\neg \neg A$.
13 227 adas
14 227 adas
15 231 pbaillot
 We write $\exists x^{N_i} . A$ or $\forall x^{N_i} . A$ for $\exists x . (N_i (x) \cand A)$ and $\forall x . (N_i (x) \cimp A)$ respectively. We refer to  $\exists x^{N_0}$,  $\forall x^{N_0}$ as \emph{safe} quantifiers.
16 227 adas
 We also write $\exists x^\normal \leq |t| . A$ for $\exists x^\normal . ( x \leq |t| \cand A )$ and $\forall x^\normal \leq |t|. A $ for $\forall x^\normal. (x \leq |t| \cimp A )$. We refer to these as \emph{sharply bounded} quantifiers, as in bounded arithmetic.
17 156 adas
18 183 pbaillot
19 220 adas
The theories we introduce are directly inspired from bounded arithmetic, namely the theories $S^i_2$.
20 220 adas
We include a similar set of axioms for direct comparison, although in our setting these are not minimal.
21 220 adas
Indeed, $\#$ can be defined using induction in our setting.
22 183 pbaillot
23 220 adas
The $\basic$ axioms of bounded arithmetic give the inductive definitions and interrelationships of the various function symbols.
24 220 adas
It also states the fundamental algebraic properties, i.e.\ $(0,\succ{ } )$ is a free algebra, and, for us, it will also give us certain `typing' information for our function symbols based on their $\bc$ specification, with safe inputs ranging over $\safe$ and normal ones over $\normal$.
25 227 adas
For instance, we include the following axioms:\footnote{Later some of these will be redundant, for instance $\safe (u \times x) $ and $\safe (u \smsh v)$ are consequences of $\Sigma^\safe_i$-$\pind$, but $\safe (x + y)$ is not since both inputs are safe and so we cannot induct.}
26 227 adas
\[
27 227 adas
\begin{array}{l}
28 227 adas
\forall u^\normal. \safe(u) \\
29 227 adas
\safe (0) \\
30 227 adas
\forall x^\safe . \safe (\succ{} x) \\
31 227 adas
\forall x^\safe . 0 \neq \succ{} (x) \\
32 227 adas
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
33 227 adas
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )
34 227 adas
\end{array}
35 227 adas
\qquad
36 227 adas
\begin{array}{l}
37 227 adas
\forall x^\safe, y^\safe . \safe(x+y)\\
38 227 adas
\forall u^\normal, x^\safe . \safe(u\times x) \\
39 227 adas
\forall u^\normal , v^\normal . \safe (u \smsh v)\\
40 227 adas
\forall u^\safe .\safe(\hlf{u})\\
41 227 adas
\forall u^\normal .\safe(|x|)
42 227 adas
\end{array}
43 227 adas
\]
44 227 adas
Notice that we have $\normal \subseteq \safe$.
45 227 adas
A full list of our $\basic$ axioms can be found in Appendix \ref{appendix:arithmetic}.
46 168 adas
47 227 adas
%\begin{definition}
48 227 adas
%	[Basic theory]
49 227 adas
%	The theory $\basic$ consists of the axioms from Appendix \ref{appendix:arithmetic}.
50 227 adas
%	\end{definition}
51 172 adas
52 227 adas
53 227 adas
%Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$.
54 179 pbaillot
55 227 adas
%\begin{definition}
56 227 adas
%[Derived functions and notations]
57 227 adas
%We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
58 227 adas
%We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
59 227 adas
%
60 227 adas
%Need $bit$, $\beta$ , $\pair{}{}{}$.
61 227 adas
%\end{definition}
62 227 adas
%
63 227 adas
%(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
64 227 adas
%
65 227 adas
%Use base theory + sharply bounded quantifiers.
66 176 adas
67 172 adas
68 157 adas
\begin{definition}
69 157 adas
[Quantifier hierarchy]
70 227 adas
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded and where $\safe , \normal$ do not occur free.
71 176 adas
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
72 176 adas
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
73 157 adas
\end{definition}
74 157 adas
75 168 adas
76 227 adas
Notice that the criterion that $\safe$ does not occur free is not a real restriction, since we can write $\safe (x)$ as $\exists y^\safe . y=x$.
77 227 adas
The criterion is purely to give an appropriate definition of the hierarchy above.
78 227 adas
79 227 adas
%\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
80 227 adas
81 227 adas
82 227 adas
\begin{definition}
83 177 pbaillot
[Polynomial induction]
84 227 adas
\label{def:polynomialinduction}
85 227 adas
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms, for each formula $A(x)$:
86 177 pbaillot
\[
87 227 adas
\left(
88 177 pbaillot
A(0)
89 227 adas
\cand (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
90 227 adas
\cand  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
91 227 adas
\right)
92 177 pbaillot
\cimp  \forall x^{\normal} . A(x)
93 177 pbaillot
\]
94 227 adas
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of $\pind$ axioms where $A(x) \in \Xi$.
95 168 adas
96 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
97 177 pbaillot
\end{definition}
98 177 pbaillot
99 177 pbaillot
100 178 pbaillot
\begin{definition}\label{def:ariththeory}
101 227 adas
Define the theory $\arith^i$ consisting of the $\basic$ axioms, $\cpind{\Sigma^\safe_i } $,
102 227 adas
%\begin{itemize}
103 227 adas
%	\item $\basic$;
104 227 adas
%	\item $\cpind{\Sigma^\safe_i } $:
105 227 adas
%\end{itemize}
106 232 pbaillot
and a particular inference rule, called $\rais$, for closed formulas $\forall \vec x. \exists y. A$:
107 168 adas
\[
108 227 adas
 \dfrac{\proves \forall \vec x^\normal . \exists  y^\safe .  A }{ \proves \forall \vec x^\normal .\exists y^\normal . A}
109 168 adas
\]
110 227 adas
We will write $\arith^i \proves A$ if $A$ is a logical consequence of the axioms of $\arith^i$, in the usual way.
111 157 adas
\end{definition}
112 227 adas
%\patrick{I think in the definition of  $\arith^i$ we should impose that the formulas considered are \textit{integer positive}, that is to say that the only negative occurrences of atoms $\safe(t)$, $\normal(t)$ are those occurring in $\forall^{\safe}$ and $\forall^{\normal}$.  Indeed I don't think this can be just proved to be a consequence of a kind of 'normal form' of proofs, as we had discussed (see sect 4.4)}
113 227 adas
%
114 227 adas
%\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
115 182 pbaillot
116 227 adas
\begin{remark}
117 227 adas
Notice that $\rais$ looks similar to the $K$ rule from the calculus for the modal logic $S4$, and indeed we believe there is a way to present these results in such a framework.
118 227 adas
However, the proof theory of first-order modal logics, in particular free-cut elimination results used for witnessing, is not sufficiently developed to carry out such an exposition.
119 227 adas
	\end{remark}
120 157 adas
121 194 adas
122 194 adas
123 157 adas
124 168 adas
125 199 pbaillot
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
126 214 pbaillot
%Todo: $+1$,
127 168 adas
128 229 adas
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall ^{\normal} \vec u, \forall ^{\safe} x, \exists^{\safe}! y. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$.
129 214 pbaillot
130 227 adas
Let us give a few examples for basic functions representable in $\arith^1$:
131 214 pbaillot
\begin{itemize}
132 215 pbaillot
\item Projection $\pi_k^{m,n}$: $\forall^{\normal} u_1, \dots, u_m,  \forall^{\safe} x_{m+1}, \dots, x_{m+n}, \exists^{\safe} y. y=x_k$.
133 215 pbaillot
\item Successor $\succ{}$: $\forall^{\safe} x, \exists^{\safe} y. y=x+1.$. The formulas for the binary successors $\succ{0}$, $\succ{1}$ and the constant functions $\epsilon^k$ are defined in a similar way.
134 215 pbaillot
\item Predecessor $p$:   $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$
135 214 pbaillot
\item Conditional $C$:
136 214 pbaillot
$$\begin{array}{ll}
137 214 pbaillot
\forall^{\safe} x, y_{\epsilon}, y_0, y_1, \exists^{\safe} y. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
138 214 pbaillot
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{0}z) \cand (y=y_0))\\
139 214 pbaillot
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{1}z) \cand (y=y_1)))\
140 214 pbaillot
\end{array}
141 214 pbaillot
$$
142 216 pbaillot
\item Addition:
143 216 pbaillot
$\forall^{\safe} x, y,  \exists^{\safe} z. z=x+y$.
144 217 pbaillot
\item Prefix:
145 217 pbaillot
146 217 pbaillot
  This is a predicate that we will need for technical reasons, in the completeness proof. The predicate $\pref(k,x,y)$ holds if the prefix of string $x$
147 217 pbaillot
  of length $k$ is $y$. It is defined as:
148 217 pbaillot
  $$\begin{array}{ll}
149 217 pbaillot
\exists^{\safe} z, \exists^{\normal} l\leq |x|. & (k+l= |x|\\
150 217 pbaillot
                                                                                                   & \cand \; |z|=l\\
151 217 pbaillot
                                                                                                   & \cand \; x=y\smsh(2,l)+z)
152 217 pbaillot
                                                                                                   \end{array}
153 217 pbaillot
$$
154 217 pbaillot
\item The following predicates will also be needed in proofs:
155 217 pbaillot
156 237 pbaillot
$\zerobit(x,k)$ (resp. $\onebit(x,k)$) holds iff the $k$th bit of $x$ is 0 (resp. 1). The predicate $\zerobit(x,k)$  for instance can be
157 217 pbaillot
defined by:
158 237 pbaillot
$$ \exists^{\safe} y.(\pref(k,x,y) \cand \exists^{\safe} z. y=\succ{0}z).$$
159 237 pbaillot
%$$ \exists^{\safe} y.(\pref(k,x,y) \cand C(y,0,1,0)).$$
160 214 pbaillot
\end{itemize}
161 214 pbaillot
162 168 adas
\subsection{A sequent calculus presentation}
163 227 adas
\begin{figure}
164 227 adas
	\[
165 227 adas
	\small
166 228 adas
	\hspace{-1.5em}
167 227 adas
	\begin{array}{l}
168 227 adas
	\begin{array}{cccc}
169 227 adas
	%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
170 227 adas
	%& \vlinf{\id}{}{p \seqar p}{}
171 227 adas
	%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
172 227 adas
	%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
173 227 adas
	\vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
174 228 adas
	& \vliinf{cut}{}{\Gamma, \Sigma \seqar \Delta, \Pi }{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
175 228 adas
	&	\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
176 228 adas
	&
177 228 adas
178 228 adas
	\vlinf{\rigrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
179 228 adas
		\\
180 228 adas
181 228 adas
		\noalign{\bigskip}
182 228 adas
		%\text{Structural:} & & & \\
183 228 adas
		%\noalign{\bigskip}
184 228 adas
185 228 adas
		\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
186 228 adas
		&
187 228 adas
		\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
188 228 adas
		&
189 228 adas
		\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
190 228 adas
		&
191 228 adas
		\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
192 228 adas
		\\
193 228 adas
		\noalign{\bigskip}
194 228 adas
		\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
195 228 adas
		&
196 228 adas
		\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
197 228 adas
		&
198 228 adas
		\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
199 228 adas
		&
200 228 adas
		\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) }
201 227 adas
	\\
202 227 adas
	\noalign{\bigskip}
203 227 adas
	%\noalign{\bigskip}
204 228 adas
	\vliinf{\lefrul{\cor}}{}{\Gamma, \Sigma, A \cor B \seqar \Delta, \Pi}{\Gamma , A \seqar \Delta}{\Sigma, B \seqar \Pi}
205 227 adas
	&
206 227 adas
	\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
207 227 adas
	&
208 227 adas
	%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
209 227 adas
	%\quad
210 227 adas
	\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
211 227 adas
	&
212 227 adas
	%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
213 227 adas
	%\quad
214 228 adas
	\vliinf{\rigrul{\cand}}{}{\Gamma, \Sigma \seqar \Delta, \Pi, A \cand B }{\Gamma \seqar \Delta, A}{\Sigma \seqar \Pi, B}
215 227 adas
	%\noalign{\bigskip}
216 227 adas
	% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
217 227 adas
	\end{array}
218 227 adas
	\end{array}
219 227 adas
	\]
220 227 adas
	\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus}
221 227 adas
\end{figure}
222 168 adas
223 227 adas
In order to carry out witness extraction for proofs of $\arith^i$, it will be useful to work with a \emph{sequent calculus} representation of proofs.
224 227 adas
Such systems exhibit strong normal forms, notably `free-cut free' proofs, and so are widely used for the `witness function method' for extracting programs from proofs.
225 227 adas
We introduce the required technical material here only briefly, due to space constraints.
226 179 pbaillot
227 227 adas
A \emph{sequent} is an expression $\Gamma \seqar \Delta$ where $\Gamma$ and $\Delta$ are multisets of formulas.
228 227 adas
The inference rules of the sequent calculus $\LK$ are displayed in Fig.~\ref{fig:sequentcalculus}.
229 227 adas
Of course, we have the following:
230 227 adas
\begin{proposition}
231 227 adas
	$A$ is a first-order theorem if and only if there is an $\LK$ proof of $\seqar A$.
232 227 adas
\end{proposition}
233 227 adas
234 221 adas
%We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
235 221 adas
% \[
236 221 adas
% \begin{array}{cc}
237 221 adas
%    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
238 221 adas
%\end{array}
239 177 pbaillot
%\]
240 221 adas
% where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
241 221 adas
% \begin{enumerate}
242 221 adas
% \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
243 221 adas
%$ \Gamma,  \Pi$ are called \textit{context formulas}.
244 221 adas
%\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
245 221 adas
%    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
246 221 adas
%   \end{enumerate}
247 221 adas
%
248 221 adas
%%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
249 221 adas
% Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
250 177 pbaillot
%
251 221 adas
%%\begin{definition}
252 221 adas
%%[Polynomial induction]
253 221 adas
%%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
254 221 adas
%%\[
255 221 adas
%%A(0)
256 221 adas
%%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
257 221 adas
%%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
258 221 adas
%%\cimp  \forall x^{\normal} . A(x)
259 221 adas
%%\]
260 221 adas
%%for each formula $A(x)$.
261 221 adas
%%
262 221 adas
%%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
263 221 adas
%%
264 221 adas
%%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
265 221 adas
%%\end{definition}
266 177 pbaillot
%
267 221 adas
%As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$.
268 174 pbaillot
269 227 adas
We extend this purely logical calculus with certain non-logical rules and initial sequents corresponding to our theories $\arith^i$.
270 221 adas
 For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction} is represented by the following rule:
271 177 pbaillot
\begin{equation}
272 177 pbaillot
\label{eqn:ind-rule}
273 177 pbaillot
\small
274 177 pbaillot
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
275 177 pbaillot
\end{equation}
276 227 adas
where $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent.
277 227 adas
%
278 227 adas
Similarly the $\rais$ inference rule of Dfn.~\ref{def:ariththeory} is represented by the nonlogical rule,
279 177 pbaillot
 \[
280 177 pbaillot
 \begin{array}{cc}
281 179 pbaillot
    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \exists  y^\normal .  A }{  \normal(t_1), \dots, \normal(t_k) \seqar \exists  y^\safe .  A}
282 177 pbaillot
\end{array}
283 177 pbaillot
\]
284 179 pbaillot
285 179 pbaillot
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general:
286 179 pbaillot
%\[
287 179 pbaillot
% \begin{array}{cc}
288 179 pbaillot
%    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \normal(t) }{  \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)}
289 179 pbaillot
%\end{array}
290 179 pbaillot
%\]
291 179 pbaillot
%}
292 227 adas
%
293 227 adas
and the $\basic$ axioms are represented by designated initial sequents.
294 227 adas
For instance here are some initial sequents corresponding to some of the $\basic$ axioms:
295 179 pbaillot
\[
296 179 pbaillot
\small
297 179 pbaillot
\begin{array}{l}
298 179 pbaillot
\begin{array}{cccc}
299 179 pbaillot
\vlinf{}{}{\seqar \safe (0)}{}&
300 179 pbaillot
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}&
301 179 pbaillot
\vlinf{}{}{ \safe (t)   \seqar 0 \neq \succ{} t}{} &
302 179 pbaillot
\vlinf{}{}{\safe (s) , \safe (t)  , \succ{} s = \succ{} t\seqar s = t }{}\\
303 179 pbaillot
\end{array}
304 179 pbaillot
\\
305 179 pbaillot
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y  }{}
306 179 pbaillot
\qquad
307 179 pbaillot
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\
308 179 pbaillot
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t)  }{}
309 179 pbaillot
\qquad
310 179 pbaillot
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t)  }{}\\
311 180 pbaillot
\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}
312 179 pbaillot
\end{array}
313 179 pbaillot
\]
314 179 pbaillot
315 227 adas
The sequent system for $\arith^i$ extends $\LK$ by the $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules.
316 227 adas
 Naturally, by completeness, we have that $\arith^i \proves A$ if and only if there is a sequent proof of $\seqar A$.
317 227 adas
 In fact, by \emph{free-cut elimination} results \cite{Takeuti87,Cook:2010:LFP:1734064} we may actually say something much stronger.
318 179 pbaillot
319 227 adas
 Let us say that a sorting $(\vec u ; \vec x)$ of the variables $\vec u , \vec x$ is \emph{compatible} with a formula $A$ if each variable of $\vec x$ occurs hereditarily safe with respect to the $\bc$-typing of terms, i.e.\ never under $\smsh, |\cdot|$ and to the right of $\times$.
320 227 adas
321 225 adas
\begin{theorem}
322 225 adas
	[Typed variable normal form]
323 225 adas
	\label{thm:normal-form}
324 227 adas
	If $\arith^i\proves  A$ then there is a $\arith^i$ sequent proof $\pi$ of $A$ such that each line has the form:
325 227 adas
	\[
326 227 adas
	\normal(\vec u), \safe (\vec x), \Gamma \seqar \Delta
327 227 adas
	\]
328 227 adas
	where $\Gamma \seqar \Delta$ contains only $\Sigma^\safe_i$ formulae for which the sorting $(\vec u ;\vec x)$ is compatible.
329 227 adas
\end{theorem}
330 227 adas
331 227 adas
Strictly speaking, we must alter some of the sequent rules a little to arrive at this normal form. For instance the $\pind$ rule would have $\normal(\vec u)$ in its lower sequent rather than $\normal (t(\vec u))$. The latter is a consequence of the former already in $\basic$.
332 228 adas
The proof of this result also relies on a heavy use of the structural rules, contraction and weakening, to ensure that we always have a complete and compatible sorting of variables on the LHS of a sequent. This is similar to what is done in \cite{OstrinWainer05} where they use a $G3$ style calculus to manage such structural manipulations.
333 228 adas
334 228 adas
As we mentioned, the fact that only $\Sigma^\safe_i$ formulae occur is due to the free-cut elimination result for first-order calculi \cite{Takeuti87,Cook:2010:LFP:1734064}, which gives a form of proof where every $\cut$ step has one of its cut formulae immediately below a non-logical step. Again, we have to adapt the $\rais$ rule a little to achieve our result, due to the fact that it has a $\exists x^\normal$ in its lower sequent. For this we consider a merge of $\rais$ and $\cut$, which allows us to directly cut the upper sequent of $\rais$ against a sequent of the form $\normal(u), A(u), \Gamma \seqar \Delta$.
335 228 adas
336 229 adas
Finally, as is usual in bounded arithmetic, we use distinguished rules for our relativised quantifiers, although we use ones that satisfy the aforementioned constraints. For instance, we include the following rules, from which the remaining ones are similar:
337 229 adas
\[
338 229 adas
\vlinf{\rigrul{\forall}}{}{ \normal(\vec u) , \safe (\vec x), \Gamma \seqar \Delta , \forall x^\safe . A(x)}{\normal(\vec u ) , \safe (\vec x), \safe (x) , \Gamma \seqar \Delta, A(x)}
339 229 adas
\quad
340 229 adas
\vlinf{\rigrul{\exists}}{}{\normal(\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x^\safe . A(x)}{ \normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A(t) }
341 229 adas
\]
342 229 adas
\[
343 234 adas
\vlinf{\lefrul{|\forall|}}{}{\normal (\vec u ) , \safe (\vec x) , s(\vec u) \leq |t(\vec u)| , \forall u^\normal \leq |t(\vec u)| . A(u) , \Gamma \seqar \Delta }{\normal (\vec u ) , \safe (\vec x) , A(s(\vec u)  ) , \Gamma \seqar \Delta  }
344 229 adas
\]
345 229 adas
where, in $\rigrul{\exists}$, $(\vec u ; \vec x)$ is compatible with $t$.