Révision 235 CSL17/soundness.tex
soundness.tex (revision 235) | ||
---|---|---|
55 | 55 |
We will use the programs $\charfn{}{}$ in the witness functions we define below. |
56 | 56 |
Let us write $\charfn{}{i}$ to denote the class of functions $\charfn{}{A}$ for $A \in \Pi^\safe_{i-1}$. |
57 | 57 |
For the notion of bounding polynomial below we are a little informal with bounds, using `big-oh' notation, since it will suffice just to be `sufficiently large'. |
58 |
Notice that, while we write $p(l)$ below, we really mean a polynomial in the \emph{length} of $l$, as a slight abuse of notation.
|
|
58 |
Notice that, while we refer to $b_A(l), p(l)$ etc.\ below as a `polynomial', we really mean a \emph{quasipolynomial} (which may also contain $\smsh$), i.e.\ a polynomial in the \emph{length} of $l$, as a slight abuse of notation.
|
|
59 | 59 |
|
60 | 60 |
|
61 | 61 |
\begin{definition} |
... | ... | |
138 | 138 |
\[ |
139 | 139 |
% \vec a^\nu = \vec u , |
140 | 140 |
% \vec b^\sigma = \vec u, |
141 |
\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1 |
|
142 |
\ \implies \ |
|
143 |
\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1 |
|
141 |
% \bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1 |
|
142 |
% \ \implies \ |
|
143 |
% \bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1 |
|
144 |
\begin{array}{rl} |
|
145 |
& \bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A \mode b_A(l)) =1 \\ |
|
146 |
\noalign{\medskip} |
|
147 |
\implies & \bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1 |
|
148 |
\end{array} |
|
144 | 149 |
\] |
145 | 150 |
for some polynomial $p$. |
146 | 151 |
% \anupam{Need $\vec w \mode p(l)$ for some $p$.} |
Formats disponibles : Unified diff