Révision 235 CSL17/soundness.tex

soundness.tex (revision 235)
55 55
We will use the programs $\charfn{}{}$ in the witness functions we define below.
56 56
Let us write $\charfn{}{i}$ to denote the class of functions $\charfn{}{A}$ for $A \in \Pi^\safe_{i-1}$.
57 57
For the notion of bounding polynomial below we are a little informal with bounds, using `big-oh' notation, since it will suffice just to be `sufficiently large'.
58
Notice that, while we write $p(l)$ below, we really mean a polynomial in the \emph{length} of $l$, as a slight abuse of notation.
58
Notice that, while we refer to $b_A(l), p(l)$ etc.\ below as a `polynomial', we really mean a \emph{quasipolynomial} (which may also contain $\smsh$), i.e.\ a polynomial in the \emph{length} of $l$, as a slight abuse of notation.
59 59

  
60 60

  
61 61
\begin{definition}
......
138 138
	\[
139 139
%	\vec a^\nu = \vec u ,
140 140
%	\vec b^\sigma = \vec u, 
141
	\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1
142
	\ \implies \
143
	\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1
141
%	\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1
142
%	\ \implies \
143
%	\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1
144
	\begin{array}{rl}
145
&	\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A \mode b_A(l)) =1 \\
146
\noalign{\medskip}
147
\implies & 	\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B((\vec u ; \vec x )\mode l, \vec w \mode p(l))) = 1
148
	\end{array}
144 149
	\]
145 150
	for some polynomial $p$.
146 151
%	\anupam{Need $\vec w \mode p(l)$ for some $p$.}

Formats disponibles : Unified diff