Statistiques
| Révision :

root / CSL16 / appendix.tex @ 234

Historique | Voir | Annoter | Télécharger (14,99 ko)

1
\appendix
2

    
3
\begin{center} \large APPENDIX \end{center}
4

    
5

    
6
\input{appendix-preliminaries}
7
\input{appendix-free-cut-elim}
8
\input{appendix-arithmetic}
9
\input{appendix-bc}
10
\input{appendix-bc-convergence}
11
\input{appendix-wfm}
12

    
13

    
14

    
15
%
16
%\section{Some cut-elimination cases}
17
%We work in a one-sided calculus for full linear logic. When working in the affine setting we simply drop the condition that weakened formulae are $?$-ed.
18
%
19
%As well as all usual rules, we have the induction rule:
20
%\[
21
%\vlinf{\indr}{(x \notin FV (\Gamma) )}{? \Gamma, A^\perp (0) , A(t)}{? \Gamma , A^\perp (x) , A(s x) }
22
%\]
23
%
24
%We give all the various cut-reduction cases in the following section but first we give a simple cut-elimination argument.
25
%
26
%\subsection{A basic (free-)cut elimination argument}
27
%We give an argument that easily scales to free-cut elimination, i.e.\ in the presence of non-logical rules.
28
%
29
%\newcommand{\anarrow}[2]{\overset{#1}{\underset{#2}{\longrightarrow}}}
30
%\newcommand{\cutredlin}{\mathit{ma}}
31
%\newcommand{\cutredexp}{exp}
32
%
33
%\begin{definition}
34
%	Let $\anarrow{}{\cutredexp}$ denote the reduction steps concerning exponential cuts, and $\anarrow{}{\cutredlin}$ be the set of cut-reduction steps concerning multiplicative and additive cuts.
35
%\end{definition}
36
%
37
%\newcommand{\rk}{\mathsf{rk}}
38
%	\renewcommand{\deg}{\mathsf{deg}}
39
%\begin{definition}
40
%	[Measures]
41
%	For a $\anarrow{}{\cutredlin}$-redex $r$, let its \emph{degree} $\deg( r)$ be the number of logical connectives or quantifiers in its cut-formula. For a proof $\pi$, its \emph{degree} $\deg( \pi)$ is the multiset of the degree of its redexes.
42
%\end{definition}
43
%
44
%\begin{proposition}
45
%If $\pi$ is not $\anarrow{}{\cutredlin}$-normal then there is a derivation $L:\pi \anarrow{*}{\cutredlin} \pi'$ such that $\deg(\pi')< \deg(\pi)$.
46
%\end{proposition}
47
%\begin{proof}
48
%	First let us show the statement in the special case that $\pi$ contains precisely one $\cut$-inference as its final step, by induction on $|\pi|$. Each commutative $\anarrow{}{\cutredlin}$-step results in us being able to apply the inductive hypothesis to smaller proofs,- in the case of $\vlan $ two smaller proofs. Each key $\anarrow{}{\cutredlin}$-case strictly reduces the degree of the proof. Consequently we can eventually transform $\pi$ to a proof $\pi'$ which has possibly several cuts of smaller degree, as required.
49
%	
50
%	Now to the general case, we simply apply the above procedure to the subproof above a topmost cut in $\pi$.
51
%\end{proof}
52
%\begin{corollary}
53
%	$\anarrow{}{\cutredlin}$ is weakly normalising.
54
%\end{corollary}
55
%
56
%
57
%\newcommand{\cntdown}{\mathit{cn}}
58
%\begin{definition}
59
%	[Lazy contraction]
60
%	Let $\anarrow{}{\cntdown}$ comprise of the following reduction steps:
61
%	\begin{enumerate}
62
%		\item The commuting steps,
63
%			\[
64
%			\vlderivation{
65
%				\vlin{\rho}{}{\Gamma', ?A, }{
66
%					\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ? A, ? A}}
67
%				}
68
%			}
69
%			\quad\to \quad
70
%			\vlderivation{
71
%				\vlin{\cntr}{}{\Gamma', ?A}{
72
%					\vlin{\rho}{}{\Gamma', ?A, ?A}{\vlhy{\Gamma, ? A, ? A}}
73
%				}
74
%			}	
75
%			\]
76
%			for each unary rule $\rho$.
77
%			\item 
78
%			The key steps:
79
%			\[ 	
80
%			\begin{array}{rcl}
81
%			\vlderivation{
82
%				\vlin{\cntr}{}{\Gamma, ?A}{
83
%					\vlin{\wk}{}{\Gamma, ?A, ?A}{\vlhy{\Gamma, ?A}}
84
%				}
85
%			}
86
%			\quad &\to & \quad
87
%			\Gamma, ?A 
88
%%			\]
89
%%			and
90
%%			\[
91
%\\
92
%\noalign{\smallskip}
93
%				\vlderivation{
94
%					\vlin{\wk}{}{\Gamma, ?A, ?A}{
95
%						\vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ?A, ?A}}
96
%					}
97
%				}
98
%				\quad &\to& \quad
99
%				\Gamma, ?A, ?A
100
%							\end{array}
101
%			\].
102
%\item The commuting steps,
103
%\[
104
%	\vlderivation{
105
%		\vliin{\rho}{}{\Gamma ,?A}{
106
%			\vlin{\cntr}{}{\Gamma_1, ?A}{\vlhy{\Gamma_1, ?A, ?A}}
107
%		}{\vlhy{\Gamma_2}}
108
%	}
109
%	\quad \to \quad
110
%	\vlderivation{
111
%		\vlin{\cntr}{}{\Gamma, ?A}{
112
%			\vliin{\rho}{}{\Gamma,?A, ?A}{\vlhy{\Gamma_1, ?A, ?A}}{ \vlhy{\Gamma_2} }
113
%		}
114
%	}
115
%\]
116
%%\[
117
%%\begin{array}{rcl}
118
%%	\vlderivation{
119
%%		\vliin{\land}{}{\Gamma, \Delta, ?A, B\land C}{
120
%%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
121
%%		}{\vlhy{\Delta, C}}
122
%%	}
123
%%	\quad &\to &\quad
124
%%	\vlderivation{
125
%%		\vlin{\cntr}{}{\Gamma, \Delta, ?A, B\land C}{
126
%%			\vliin{\land}{}{\Gamma, \Delta, ?A, ?A, B\land C}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, C} }
127
%%		}
128
%%	}
129
%%%	\]
130
%%%	
131
%%%	\[
132
%%\\
133
%%\noalign{\smallskip}
134
%%	\vlderivation{
135
%%		\vliin{\cut}{}{\Gamma, \Delta, ?A}{
136
%%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
137
%%		}{\vlhy{\Delta, \lnot{B}}}
138
%%	}
139
%%	\quad &\to& \quad
140
%%	\vlderivation{
141
%%		\vlin{\cntr}{}{\Gamma, \Delta, ?A}{
142
%%			\vliin{\cut}{}{\Gamma, \Delta, ?A, ?A}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, \lnot{B}} }
143
%%		}
144
%%	}
145
%%\end{array}
146
%%\]
147
%for each binary rule $\rho \in \{ \land, \cut \}$.
148
%\item The commuting step:
149
%	\[
150
%	\vlderivation{
151
%		\vliin{\vlan}{}{\Gamma, ?A, B\vlan C}{
152
%			\vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}}
153
%		}{\vlhy{\Gamma, ?A, B}}
154
%	}
155
%	\quad \to \quad
156
%	\vlderivation{
157
%		\vlin{\cntr}{}{\Gamma, ?A, B\vlan C}{
158
%			\vliin{\vlan}{}{\Gamma, ?A, ?A, B\vlan C}{\vlhy{\Gamma, ?A, ?A, B}}{
159
%				\vlin{\wk}{}{\Gamma, ?A, ?A, C}{\vlhy{\Gamma, ?A, C}}
160
%			}
161
%		}
162
%	}
163
%	\]
164
%	\end{enumerate}
165
%	For binary rules:
166
%
167
%\end{definition}
168
%\begin{proposition}
169
%	$\anarrow{}{\cntdown}$ is weakly normalising
170
%	, modulo $\cntr$-$\cntr$ redexes,
171
%	and degree-preserving. 
172
%	If $\pi$ is $\anarrow{}{\cutredlin}$-normal and $\pi \downarrow_\cntdown \pi'$, then so is $\pi'$.
173
%\end{proposition}
174
%\begin{proof}
175
%	By induction on the number of redexes in a proof. Start with bottommost redex, by induction on number of inference steps beneath it.
176
%\end{proof}
177
%
178
%\begin{remark}
179
%	Only weakly normalising since $\cntr$ can commute with $\cntr$, allowing cycles.
180
%\end{remark}
181
%
182
%\begin{proposition}
183
%	If $\pi$ is $\anarrow{}{\cutredexp}$-reducible but $\anarrow{}{\cutredlin}$- and $\anarrow{}{\cntdown}$-normal then there is a derivation $H:\pi \anarrow{*}{\cutredexp} \pi'$ such that $\deg (\pi')<\deg(\pi)$.
184
%\end{proposition}
185
%
186
%
187
%
188
%\subsection{Base cases}
189
%
190
%\[
191
%\vlderivation{
192
%\vliin{\cut}{}{ \Gamma,a }{ \vlhy{\Gamma,a} }{ \vlin{\id}{}{a,a^\bot}{ \vlhy{} } }
193
%}
194
%\quad\to\quad
195
%\vlderivation{
196
%\Gamma,a
197
%}
198
%\]
199
%
200
%\[
201
%\vlderivation{
202
%\vliin{\cut}{}{\Gamma}{ \vlin{\bot}{}{ \Gamma,\bot }{ \vlhy{\Gamma} } }{ \vlin{1}{}{1}{ \vlhy{} } }
203
%}
204
%\quad\to\quad
205
%\vlderivation{
206
%\Gamma
207
%}
208
%\]
209
%
210
%\[
211
%\vlderivation{
212
%\vliin{\cut}{}{ \Gamma,\Delta,\top }{ \vlin{\top}{}{ \Gamma,\top,0 }{ \vlhy{} } }{ \vlhy{\Delta , \top } }
213
%}
214
%\quad\to\quad
215
%\vlinf{\top}{}{ \Gamma,\Delta,\top }{}
216
%\]
217
%
218
%\subsection{Commutative cases}
219
%These are the cases when the principal formula of a step is not active for the cut-step below.
220
%
221
%\begin{enumerate}
222
%\item The cut-step is immediately preceded by an initial step. Note that only the case for $\top$ applies:
223
%\[
224
%\vlderivation{
225
%\vliin{\cut}{}{\Gamma,\Delta,\top}{ 
226
%\vlin{\top}{  }{ \Gamma,\top,A }{ \vlhy{} }
227
% }{ \vlhy{\Delta,A^\bot } }
228
%}
229
%\quad\to\quad
230
%\vlinf{\top}{}{ \Gamma,\Delta,\top }{}
231
%\]
232
%%Notice that this commutation eliminates the cut entirely and preserves the height of all cuts below.
233
%\item\label{CaseCommOneStep} A cut-step is immediately preceded by a step $\rho$ with exactly one premiss:
234
%\[
235
%\vlderivation{
236
%\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}}
237
%}
238
%\]
239
%We have three subcases:
240
%\begin{enumerate}
241
%\item\label{subcase:unary-commutation-vanilla} 
242
%%$\Delta$ consists of only $?$-ed formulae or 
243
%If $\rho \notin \{! , \indr \}$ then we can simply permute as follows:
244
%\begin{equation}
245
%\label{eqn:com-case-unary-simple}
246
%\vlderivation{
247
%\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}}
248
%}
249
%\quad \to \quad
250
%\vlderivation{
251
%\vlin{\rho}{}{\Gamma',\Delta}{
252
%\vliin{\cut}{}{\Gamma,\Delta}{\vlhy{\Gamma,A}}{\vlhy{A^\bot , \Delta}}
253
%}
254
%}
255
%\end{equation}
256
%(If $\rho$ was $\forall$ then we might need to rename some free variables in $\Delta$.)
257
%\item $\rho $ is a $!$-step. Therefore $\Gamma$ has the form $? \Sigma , B$ and $A$ has the form $?C$, yielding the following situation:
258
%\[
259
%\vlderivation{
260
%\vliin{\cut}{}{? \Sigma, !B, \Delta }{
261
%\vlin{!}{}{? \Sigma, !B , ?C}{\vlhy{?\Sigma , B , ?C}  }
262
%}{
263
%\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}}
264
%}
265
%}
266
%\]
267
%Now, if $!C^\perp$ is principle for $\rho'$ then $\rho'\in \{! , \indr\}$ and so $\Delta $ must be $?$-ed; in this case we are able to apply the transformation \eqref{eqn:com-case-unary-simple}. Otherwise $A^\perp$ is not principal for $\rho'$ and so $\rho' \notin \{! , \indr \}$, which means we can apply \ref{subcase:unary-commutation-vanilla} along this side of the subproof.
268
%\item $\rho$ is a $\indr$-step. Therefore $\Gamma$ has the form $? \Sigma , B^\perp(x), B(s x) $ and $A$ has the form $?C$, and the argument is similar to the case above.
269
%% yielding the following situation:
270
%%\[
271
%%\vlderivation{
272
%%	\vliin{\cut}{}{? \Sigma, B^\perp (0) , B(t), \Delta }{
273
%%		\vlin{\indr}{}{? \Sigma, B^\perp (0) , B(t) , ?C}{\vlhy{?\Sigma , B^\perp(x) , B(s x) , ?C}  }
274
%%	}{
275
%%	\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}}
276
%%}
277
%%}
278
%%\]
279
%\end{enumerate}
280
%
281
%
282
%
283
%\item A cut-step is immediately preceded by a $\vlte $-step:
284
%\[
285
%\vlderivation{
286
%\vliin{\cut}{}{\Gamma,\Delta,\Sigma,A\vlte B }{
287
%\vliin{\vlte}{}{\Gamma,\Delta,A\vlte B,C }{\vlhy{\Gamma,A,C}}{\vlhy{\Delta,B}}
288
%}{\vlhy{ \Sigma , C^\bot  }}
289
%}
290
%\quad\to\quad
291
%\vlderivation{
292
%\vliin{\vlte}{}{\Gamma,\Delta,\Sigma,A\vlte B}{
293
%\vliin{\cut}{}{\Gamma,\Sigma,A}{\vlhy{\Gamma,A,C}}{\vlhy{\Sigma,C^\bot}}
294
%}{\vlhy{\Delta,B}}
295
%}
296
%\]
297
%%Notice that this commutation might increase the height of any cuts below along the right branch of the indicated cut, but decreases the height along the left branch.
298
%\item\label{CommCaseAmpersand} A cut-step is immediately preceded by a $\vlan$-step.
299
%\[
300
%\vlderivation{
301
%\vliin{\cut}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} }
302
%}
303
%\quad\to\quad
304
%\vlderivation{
305
%\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{
306
%\vliin{cut}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } }
307
%}{
308
%\vliin{ \cut }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} }
309
%}
310
%}
311
%\]
312
%\item (No rule for cuts commuting with cuts.)
313
%%A cut-step is immediately preceded by another cut-step:
314
%\[
315
%\vlderivation{
316
%	\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{
317
%		\vliin{\cut}{}{\Gamma, \Delta, B}{\vlhy{\Gamma, A}}{\vlhy{\Delta, \lnot{A}, B}}
318
%		}{\vlhy{\Sigma, \lnot{B}}}
319
%	}
320
%	\quad\to\quad
321
%\vlderivation{
322
%	\vliin{\cut}{}{\Gamma, \Delta, \Sigma}{\vlhy{\Gamma, A}}{
323
%		\vliin{\cut}{}{\Delta, \Sigma, \lnot{A}}{\vlhy{\Delta, \lnot{A}, B}}{\vlhy{\Sigma, \lnot{B}}}
324
%		}
325
%	}
326
%\]
327
%\end{enumerate}
328
%
329
%
330
%
331
%\subsection{Key cases: structural steps}
332
%%[THIS SECTION MIGHT NOT BE NECESSARY]
333
%We attempt to permute cuts on exponential formulae over structural steps whose principal formula is active for the cut. 
334
%
335
%We use the commutative case \ref{CaseCommOneStep} to assume that the topmost cut-step in a sequence has already been permuted up to its origin on the $!$-side. 
336
%
337
%We have two cases.
338
%\begin{enumerate}
339
%\item\label{StructStepCont} The structural step preceding the cut is a weakening:
340
%\[
341
%\vlderivation{
342
%\vliin{\cut}{}{?\Gamma,\Delta}{ \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } }{ \vlin{w}{}{ ?A^\bot }{ \vlhy{\Delta	} } }
343
%}
344
%\quad\to\quad
345
%\vlinf{w}{}{?\Gamma,\Delta}{ \Delta }
346
%\]
347
%%\item The structural step preceding the cut is a contraction:
348
%%\[
349
%%\vlderivation{
350
%%\vliin{\cut}{}{ ?\Gamma,\Delta }{
351
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
352
%%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot ,  \Delta} } }
353
%%}
354
%%\quad\to\quad
355
%%\vlderivation{
356
%%\vliq{c}{}{?\Gamma, \Delta}{
357
%%\vliin{\cut}{}{?\Gamma, ?\Gamma,\Delta }{
358
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
359
%%}{
360
%%\vliin{\cut}{}{?\Gamma,?A^\bot , \Delta }{
361
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
362
%%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } }
363
%%}
364
%%}
365
%%}
366
%%\]
367
%%OR use a multicut:
368
%%\[
369
%%\vlderivation{
370
%%\vliin{\cut}{}{ ?\Gamma,\Delta }{
371
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
372
%%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot ,  \Delta} } }
373
%%}
374
%%\quad\to\quad
375
%%\vlderivation{
376
%%\vliin{\multicut}{}{?\Gamma,?A^\bot , \Delta }{
377
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
378
%%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } }
379
%%}
380
%%\]
381
%\item The structural step preceding a cut is a contraction:
382
%\[
383
%\vlderivation{
384
%	\vliin{\cut}{}{?\Gamma, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{
385
%		\vlin{\cntr}{}{ ?A,\Sigma }{ \vlhy{ ?A,?A,\Sigma } }
386
%	}
387
%}
388
%\quad\to\quad
389
%\vlderivation{
390
%	\vliq{\cntr}{}{ ?\Gamma,\Sigma }{
391
%		\vliin{\cut}{}{ ?\Gamma,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{
392
%			\vliin{\cut}{}{ ?A,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,\Sigma } }
393
%		}
394
%	}
395
%}
396
%\]
397
%%\item The structural step preceding a cut is a parallel contraction:
398
%%\[
399
%%\vlderivation{
400
%%\vliin{\cut}{}{?\Gamma,?\Delta, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{
401
%%\vlin{}{}{ ?A,?\Delta,\Sigma }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } }
402
%%}
403
%%}
404
%%\quad\to\quad
405
%%\vlderivation{
406
%%\vlin{}{}{ ?\Gamma,?\Delta,\Sigma }{
407
%%\vliin{\cut}{}{ ?\Gamma,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{
408
%%\vliin{\cut}{}{ ?A,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } }
409
%%}
410
%%}
411
%%}
412
%%\]
413
%\end{enumerate}
414
%
415
%\subsection{Key cases: logical steps}
416
%Finally, once all cuts have been permuted maximally on both sides, we have the cases when the cut-formula is principal for a preceding logical step on both sides. We have three cases, one for every pair of connectives.
417
%\begin{enumerate}
418
%\item The cut-formula is multiplicative:
419
%\[
420
%\vlderivation{
421
%\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{
422
%\vliin{\vlte}{}{ \Gamma,\Delta,A\vlte B }{ \vlhy{\Gamma,A} }{ \vlhy{\Delta,B} }
423
%}{ \vlin{\vlpa}{}{ \Sigma, A^\bot \vlpa B^\bot }{ \vlhy{\Sigma , A^\bot , B^\bot} } }
424
%}
425
%\quad\to\quad
426
%\vlderivation{
427
%\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ \vlhy{\Gamma,A} }{
428
%\vliin{\cut}{}{ \Delta,\Sigma,A^\bot }{ \vlhy{\Delta,B} }{ \vlhy{\Sigma , A^\bot,B^\bot } }
429
%}
430
%}
431
%\]
432
%\item The cut-formula is additive,
433
%\[
434
%\vlderivation{
435
%\vliin{\cut}{}{ \Gamma,\Delta }{ 
436
%\vliin{\vlan}{}{ \Gamma,A\vlan B }{ \vlhy{\Gamma,A} }{ \vlhy{\Gamma,B} }
437
% }{ \vlin{\vlor}{}{ \Delta,A^\bot\vlor B^\bot }{ \vlhy{\Delta, A^\bot } } }
438
%}
439
%\quad\to\quad
440
%\vliinf{\cut}{}{ \Gamma,\Delta }{ \Gamma,A }{ \Delta,A^\bot }
441
%\]
442
%where the case for the other $\vlor$-rule is symmetric.
443
%\item The cut-formula is exponential.
444
%\[
445
%\vlderivation{
446
%\vliin{\cut}{}{ ?\Gamma,\Delta }{
447
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} }
448
%}{
449
%\vlin{?}{}{ \Delta,?A^\bot }{ \vlhy{\Delta, A^\bot } }
450
%}
451
%}
452
%\quad\to\quad
453
%\vliinf{\cut}{}{ ?\Gamma,\Delta }{ ?\Gamma,A }{ \Delta,A^\bot }
454
%\]
455
%\item The cut-formula is quantified.
456
%\[
457
%\vlderivation{
458
%	\vliin{\cut}{}{\Gamma, \Delta}{
459
%		\vlin{\forall}{}{\Gamma, \forall x. A(x)}{\vltr{\pi(a)}{\Gamma, A(a)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}}
460
%		}{
461
%		\vlin{\exists}{}{\Delta, \exists x . \lnot{A}(x)}{\vlhy{\Delta, \lnot{A}(t)}}
462
%		}
463
%	}
464
%	\quad \to \quad
465
%	\vlderivation{
466
%		\vliin{\cut}{}{\Gamma, \Delta}{
467
%			\vltr{\pi(t)}{\Gamma, A(t)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
468
%			}{\vlhy{\Delta, \lnot{A}(t)}}
469
%		}
470
%\]
471
%\end{enumerate}
472
%