Révision 233 CSL17/soundness.tex
soundness.tex (revision 233) | ||
---|---|---|
153 | 153 |
Now we can prove the soundness result: |
154 | 154 |
|
155 | 155 |
\begin{proof} |
156 |
[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}] |
|
156 |
[Proof sketch of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
|
|
157 | 157 |
Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\safe . A(\vec u ; x)$. By inversion and Thm.~\ref{thm:normal-form} there is a $\arith^i$ proof $\pi$ of $\normal (\vec u ) \seqar \exists x^\safe. A(\vec u ; x )$ in typed variable normal form. |
158 | 158 |
By Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f^\pi$ with $\wit{\vec u ;}{\exists x^\safe . A} (l, \vec u ; f(\vec u \mode l;)) =1$. |
159 | 159 |
By the definition of $\wit{}{}$ and Prop.~\ref{prop:wit-rfn} we have that $\exists x . A(\vec u \mode l; x)$ is true just if $A(\vec u \mode l ; \beta (q(l), 1 ; f(\vec u \mode l;) ))$ is true. |
Formats disponibles : Unified diff