Révision 233 CSL17/soundness.tex

soundness.tex (revision 233)
153 153
Now we can prove the soundness result:
154 154
	
155 155
	\begin{proof}
156
		[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
156
		[Proof sketch of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
157 157
		Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\safe . A(\vec u ; x)$. By inversion and Thm.~\ref{thm:normal-form} there is a $\arith^i$ proof $\pi$ of $\normal (\vec u ) \seqar \exists x^\safe. A(\vec u ; x )$ in typed variable normal form.
158 158
By Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f^\pi$ with $\wit{\vec u ;}{\exists x^\safe . A} (l, \vec u ; f(\vec u \mode l;)) =1$.
159 159
By the definition of $\wit{}{}$ and Prop.~\ref{prop:wit-rfn} we have that $\exists x . A(\vec u \mode l; x)$ is true just if $A(\vec u \mode l ; \beta (q(l), 1 ; f(\vec u \mode l;) ))$ is true.

Formats disponibles : Unified diff