Révision 231
CSL17/arithmetic.tex (revision 231) | ||
---|---|---|
12 | 12 |
We will assume, without loss of generality, that formulas are in \textit{De Morgan normal form}, that is to say that in formulas negation can only occur on atomic formulas, and that there is not any occurrence of a subformula of the form $\neg \neg A$. |
13 | 13 |
|
14 | 14 |
|
15 |
We write $\exists x^{N_i} . A$ or $\forall x^{N_i} . A$ for $\exists x . (N_i (x) \cand A)$ and $\forall x . (N_i (x) \cimp A)$ respectively. We refer to these as \emph{safe} quantifiers.
|
|
15 |
We write $\exists x^{N_i} . A$ or $\forall x^{N_i} . A$ for $\exists x . (N_i (x) \cand A)$ and $\forall x . (N_i (x) \cimp A)$ respectively. We refer to $\exists x^{N_0}$, $\forall x^{N_0}$ as \emph{safe} quantifiers.
|
|
16 | 16 |
We also write $\exists x^\normal \leq |t| . A$ for $\exists x^\normal . ( x \leq |t| \cand A )$ and $\forall x^\normal \leq |t|. A $ for $\forall x^\normal. (x \leq |t| \cimp A )$. We refer to these as \emph{sharply bounded} quantifiers, as in bounded arithmetic. |
17 | 17 |
|
18 | 18 |
|
Formats disponibles : Unified diff