root / CSL16 / appendix-preliminaries.tex @ 230
Historique | Voir | Annoter | Télécharger (1,65 ko)
1 |
\section{Proof of Thm.~\ref{thm:deduction}, Sect.~\ref{sect:preliminaries}} |
---|---|
2 |
\label{sect:app-preliminaries} |
3 |
|
4 |
%Equality axioms: |
5 |
%\[ |
6 |
% \begin{array}{rl} |
7 |
%\refl & \forall x . x = x \\ |
8 |
%\symm & \forall x, y. (x = y \limp y = x )\\ |
9 |
%\trans & \forall x , y , z . ( x = y \limp y = z \limp x = z ) \\ |
10 |
%\subst_f & \forall \vec x , \vec y . (\vec x = \vec y \limp f(\vec x) = f(\vec y) ) \\ |
11 |
%\subst_P & \forall \vec x , \vec y. (\vec x = \vec y \limp P(\vec x) \limp P(\vec y) ) |
12 |
% \end{array} |
13 |
% \] |
14 |
|
15 |
%\begin{theorem}[Theorem \ref{thm:deduction}] |
16 |
%tt |
17 |
%\end{theorem} |
18 |
|
19 |
% \begin{proof}[Proof of Thm.~\ref{thm:deduction}] |
20 |
Suppose $\theory \cup \{ A \}$ proves $B$ and let $\pi$ be a $\theory$-derivation with end-sequent $\seqar B$ and leaves $\seqar A$, i.e.: |
21 |
\[ |
22 |
\vltreeder{\pi}{ \seqar B }{ \seqar A }{\vldots}{\seqar A} |
23 |
\] |
24 |
|
25 |
Then construct the following $\theory$-proof of $!A \limp B$, |
26 |
\[ |
27 |
\vlderivation{ |
28 |
\vlin{\rigrul{\limp}}{}{\seqar !A \limp B}{ |
29 |
\vltr{!A, \pi }{ !A \seqar B }{ |
30 |
\vlin{\lefrul{!}}{}{!A \seqar A}{ |
31 |
\vlin{\id}{}{A\seqar A}{\vlhy{}} |
32 |
} |
33 |
}{ \vlhy{\vldots} }{ |
34 |
\vlin{\lefrul{!}}{}{!A \seqar A}{ |
35 |
\vlin{\id}{}{A\seqar A}{\vlhy{}} |
36 |
} |
37 |
} |
38 |
} |
39 |
} |
40 |
\] |
41 |
where $!A, \pi$ is obtained by appending $!A$ to the antecedent of each sequent in $\pi$, inserting left-contraction steps when necessary. Free variable conditions are satisfied since $A$ is closed (and so also $!A$) and side-conditions are satisfied since $!A$ is a $!$-formula. |
42 |
|
43 |
For the other direction simply extend any $\theory$-proof of $!A \limp B$ as follows: |
44 |
\[ |
45 |
\vlderivation{ |
46 |
\vliin{\cut}{}{ \seqar B }{ |
47 |
\vlin{\rigrul{!}}{}{\seqar !A }{\vlhy{\seqar A}} |
48 |
}{ |
49 |
\vliq{ \inv{{\limp}} }{}{ !A \seqar B }{ \vlhy{\seqar !A \limp B }} |
50 |
} |
51 |
} |
52 |
\] |
53 |
|
54 |
|
55 |
% \end{proof} |