Révision 230 CSL17/appendix-arithmetic.tex

appendix-arithmetic.tex (revision 230)
1
\section{An arithmetic for the polynomial hierarchy}\label{appendix:arithmetic}
1
\section{Appendix: remaining axioms of $\basic$}\label{appendix:arithmetic}
2 2

  
3 3
We give here the  list of remaining  axioms of $\basic$, which are directly inspired by the $\basic$ theory of Buss's bounded arithmetic \cite{Buss86book}:
4 4
%$\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$,
......
7 7
$$
8 8
%\begin{equation}
9 9
\begin{array}{l}
10
 \forall x^{\safe}, y^{\safe}.  (y\leq x) \cimp (y \leq \succ{} x) \\
10
 \forall x^{\safe}, y^{\safe}.  (y\leq x\cimp  y \leq \succ{} x) \\
11 11
\forall x^{\safe}. x \neq \succ{} x\\
12 12
 \forall x^{\safe}.0 \leq x\\
13
 \forall x^{\safe}, y^{\safe}.(x\leq y \cand x \neq y) \leftrightarrow \succ{} x \leq y\\
14
\forall x^{\safe}. x\neq 0 \cimp \succ{0}x \neq 0\\
15
\forall x^{\safe}, y^{\safe}. y\leq x \cor x \leq y\\
16
\forall x^{\safe}, y^{\safe}. x\leq y \cand y\leq x \cimp x=y\\
17
\forall x^{\safe}, y^{\safe}, z^{\safe}. x\leq y \cand y\leq z \cimp x\leq z\\
13
 \forall x^{\safe}, y^{\safe}. ((x\leq y \cand x \neq y) \ciff \succ{} x \leq y) \\
14
\forall x^{\safe}. (x\neq 0 \cimp \succ{0}x \neq 0)\\
15
\forall x^{\safe}, y^{\safe}. (y\leq x \cor x \leq y)\\
16
\forall x^{\safe}, y^{\safe}. ((x\leq y \cand y\leq x )\cimp x=y)\\
17
\forall x^{\safe}, y^{\safe}, z^{\safe}. ((x\leq y \cand y\leq z) \cimp x\leq z)\\
18 18
  |0|=0\\
19
  \forall x^{\safe}, y^{\safe}.x\neq 0 \cimp  |\succ{0}x|=\succ{}( |x|) \cand |\succ{0}x|= \succ{}(|x|) \\
19
  \forall x^{\safe}, y^{\safe}.( x\neq 0 \cimp  (|\succ{0}x|=\succ{}( |x|) \cand |\succ{1}x|= \succ{}(|x|))) \\
20 20
   |\succ{}0|=\succ{} 0\\
21
\forall x^{\safe}, y^{\safe}.   x\leq y \cimp   |x|\leq  |y|\\
22
\forall x^{\safe}, y^{\normal}.    |x\smsh y|=\succ{}( |x|\cdot  |y|)\\
21
\forall x^{\safe}, y^{\safe}.   (x\leq y \cimp   |x|\leq  |y|)\\
22
\forall x^{\normal}, y^{\normal}.    |x\smsh y|=\succ{}( |x|\cdot  |y|)\\
23 23
\forall y^{\normal}.    0 \smsh y=\succ{} 0\\
24
\forall x^{\safe}.    x\neq 0 \cimp 1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)\\
24
\forall x^{\normal}.    (x\neq 0 \cimp (1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)))\\
25 25
\forall x^{\normal}, y^{\normal}.    x \smsh y = y \smsh x\\
26
  \forall x^{\safe}, y^{\safe}, z^{\normal}.    |x|= |y| \cimp x\smsh z = y\smsh z\\
27
  \forall x^{\safe}, u^{\safe}, v^{\safe}, y^{\normal}.      |x|= |u|+  |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y)\\
26
  \forall x^{\normal}, y^{\normal}, z^{\normal}. (   |x|= |y| \cimp x\smsh z = y\smsh z)\\
27
  \forall x^{\normal}, u^{\normal}, v^{\normal}, y^{\normal}.      (|x|= |u|+  |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y))\\
28 28
  \forall x^{\safe}, y^{\safe}.      x\leq x+y\\
29
 \forall x^{\safe}, y^{\safe}.       x\leq y \cand x\neq y \cimp \succ{}(\succ{0}x) \leq \succ{0}y \cand  \succ{}(\succ{0}x) \neq \succ{0}y\\
29
 \forall x^{\safe}, y^{\safe}.    (  ( x\leq y \cand x\neq y) \cimp( \succ{}(\succ{0}x) \leq \succ{0}y \cand  \succ{}(\succ{0}x) \neq \succ{0}y))\\
30 30
   \forall x^{\safe}, y^{\safe}.     x+y=y+x\\
31 31
 \forall x^{\safe}.       x+0=x\\
32 32
 \forall x^{\safe}, y^{\safe}.       x+\succ{}y=\succ{}(x+y)\\
33 33
  \forall x^{\safe}, y^{\safe}, z^{\safe}.      (x+y)+z=x+(y+z)\\
34
   \forall x^{\safe}, y^{\safe}, z^{\safe}.     x+y \leq x+z \leftrightarrow y\leq z\\
35
 \forall x^{\normal}       x\cdot 0=0\\
34
   \forall x^{\safe}, y^{\safe}, z^{\safe}. (    x+y \leq x+z \ciff y\leq z)\\
35
 \forall x^{\safe}       0\cdot x =0\\
36 36
      \forall x^{\normal}, y^{\safe}.  x\cdot(\succ{}y)=(x\cdot y)+x\\
37 37
       \forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x\\
38 38
      \forall x^{\normal}, y^{\safe}, z^{\safe}.  x\cdot(y+z)=(x\cdot y)+(x\cdot z)\\
39
  \forall x^{\normal}, y^{\safe}, z^{\safe}.      x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \leftrightarrow y\leq z)\\
40
 \forall x^{\normal}       x\neq 0 \cimp  |x|=\succ{}(\hlf{x})\\
41
   \forall x^{\safe}, y^{\normal}.     x= \hlf{y} \leftrightarrow (\succ{0}x=y \cor \succ{}(\succ{0}x)=y)
39
  \forall x^{\normal}, y^{\safe}, z^{\safe}.      (x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \ciff y\leq z))\\
40
 \forall x^{\normal}  .     (x\neq 0 \cimp  |x|=\succ{}(\hlf{x}))\\
41
   \forall x^{\safe}, y^{\safe}.   (  x= \hlf{y} \ciff (\succ{0}x=y \cor \succ{}(\succ{0}x)=y))
42 42
 \end{array}
43 43
%\end{equation}
44 44
$$
45 45

  
46
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic:
47
\begin{proposition}
48
	[Length induction]
49
	The axiom schema of formulae,
50
	\begin{equation}
51
	\label{eqn:lind}
52
	( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|)
53
	\end{equation}
54
	for formulae $A \in \Sigma^\safe_i$
55
	is equivalent to $\cpind{\Sigma^\safe_i}$.
56
\end{proposition}
57
\begin{proof}
58
	Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$.
59
	Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$.
60
\end{proof}
61 46

  
62
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$.
63
We will freely use this in place of polynomial induction whenever it is convenient.
47

  
48

  
49
%
50
%It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic:
51
%\begin{proposition}
52
%	[Length induction]
53
%	The axiom schema of formulae,
54
%	\begin{equation}
55
%	\label{eqn:lind}
56
%	( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|)
57
%	\end{equation}
58
%	for formulae $A \in \Sigma^\safe_i$
59
%	is equivalent to $\cpind{\Sigma^\safe_i}$.
60
%\end{proposition}
61
%\begin{proof}
62
%	Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$.
63
%	Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$.
64
%\end{proof}
65
%
66
%Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$.
67
%We will freely use this in place of polynomial induction whenever it is convenient.

Formats disponibles : Unified diff