root / CSL17 / appendix-soundness.tex @ 229
Historique | Voir | Annoter | Télécharger (8,07 ko)
1 |
\section{Proof of soundness} |
---|---|
2 |
|
3 |
\begin{definition} |
4 |
[Length bounded characteristic functions] |
5 |
We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A$ and a compatible typing $(\vec u ; \vec x)$ of its varables, as follows. |
6 |
% If $A$ is a $\Pi_{i}$ formula then: |
7 |
\[ |
8 |
\begin{array}{rcl} |
9 |
\charfn{\vec u ; \vec x}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\ |
10 |
\smallskip |
11 |
% \charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\ |
12 |
% \smallskip |
13 |
\charfn{\vec u ; \vec x}{\neg A} (l, \vec u ; \vec x) & \dfn & \notfn (;\charfn{\vec u ; \vec x}{A}(l , \vec u ; \vec x)) \\ |
14 |
\smallskip |
15 |
\charfn{\vec u ; \vec x}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \orfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) \\ |
16 |
\smallskip |
17 |
\charfn{\vec u ; \vec x}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \andfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) |
18 |
% \end{array} |
19 |
% \quad |
20 |
% \begin{array}{rcl} |
21 |
\\ \smallskip |
22 |
\charfn{\vec u ; \vec x}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases} |
23 |
1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\ |
24 |
0 & \text{otherwise} |
25 |
\end{cases} \\ |
26 |
\smallskip |
27 |
\charfn{\vec u ; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & |
28 |
\begin{cases} |
29 |
0 & \exists x^\sigma. \charfn{\vec u ; \vec x}{ A(x)} (l, \vec u; \vec x , x) = 0 \\ |
30 |
1 & \text{otherwise} |
31 |
\end{cases} |
32 |
\end{array} |
33 |
\] |
34 |
\end{definition} |
35 |
|
36 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
37 |
|
38 |
\begin{proof} |
39 |
Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$. |
40 |
We define the function $f$ inductively, by considering the various final rules of $\pi$. |
41 |
|
42 |
|
43 |
\paragraph*{Negation} |
44 |
Can assume only on atomic formulae, so no effect. |
45 |
|
46 |
\paragraph*{Logical rules} |
47 |
Pairing, depairing. Need length-boundedness. |
48 |
|
49 |
If we have a left conjunction step: |
50 |
\[ |
51 |
\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta} |
52 |
\] |
53 |
By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that, |
54 |
\[ |
55 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w) |
56 |
\quad \implies \quad |
57 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) )) |
58 |
\] |
59 |
for some polynomial $p$. |
60 |
% |
61 |
We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$. |
62 |
|
63 |
|
64 |
Right disjunction step: |
65 |
\[ |
66 |
\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B } |
67 |
\] |
68 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. |
69 |
Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that: |
70 |
\[ |
71 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w) |
72 |
\quad \implies \quad |
73 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) )) |
74 |
\] |
75 |
for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH). |
76 |
We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
77 |
\paragraph*{Quantifiers} |
78 |
\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
79 |
|
80 |
|
81 |
|
82 |
Sharply bounded quantifiers are generalised versions of logical rules. |
83 |
\[ |
84 |
\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) } |
85 |
\] |
86 |
By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that: |
87 |
\[ |
88 |
\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w ) |
89 |
\quad \implies \quad |
90 |
\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) ) |
91 |
\] |
92 |
with $|f|\leq q(|l|)$. |
93 |
|
94 |
By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that.... |
95 |
|
96 |
We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w )$. |
97 |
|
98 |
|
99 |
Right existential: |
100 |
\[ |
101 |
\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)} |
102 |
\] |
103 |
Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form. |
104 |
|
105 |
|
106 |
\paragraph*{Contraction} |
107 |
Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
108 |
|
109 |
\[ |
110 |
\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A} |
111 |
\] |
112 |
|
113 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss. |
114 |
We define: |
115 |
\[ |
116 |
f^\pi_A ( \vec u ; \vec x , \vec w ) |
117 |
\quad \dfn \quad |
118 |
\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w) ) |
119 |
\] |
120 |
|
121 |
|
122 |
\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. } |
123 |
\paragraph*{Induction} |
124 |
Corresponds to safe recursion on notation. |
125 |
Suppose final step is (wlog): |
126 |
\[ |
127 |
\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma, A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} } |
128 |
\] |
129 |
\anupam{need to say in normal form part that can assume induction of this form} |
130 |
For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!} |
131 |
|
132 |
Now, by the inductive hypothesis, we have functions $h_i$ such that: |
133 |
\[ |
134 |
\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x , \vec w) |
135 |
\quad \implies \quad |
136 |
\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x , h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) ) |
137 |
\] |
138 |
First let us define $ f$ as follows: |
139 |
\[ |
140 |
\begin{array}{rcl} |
141 |
f (0 , \vec u ; \vec x, \vec w, w ) & \dfn & w\\ |
142 |
f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & |
143 |
h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w )) |
144 |
\end{array} |
145 |
\] |
146 |
where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$. |
147 |
\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.} |
148 |
|
149 |
Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$. |
150 |
|
151 |
\paragraph*{Cut} |
152 |
If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position. |
153 |
Otherwise it is a `raisecut': |
154 |
\[ |
155 |
\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe . A(x) }{ \normal (u) , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta } |
156 |
\] |
157 |
In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as: |
158 |
\[ |
159 |
\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w ) |
160 |
\quad \dfn \quad |
161 |
\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w ) |
162 |
\] |
163 |
\end{proof} |
164 |
|