Révision 229 CSL17/preliminaries.tex

preliminaries.tex (revision 229)
236 236
 
237 237
 \subsection{Some properties and extensions of $\bc$ and $\mubc$}\label{sect:somepropertiesofmubc}
238 238
 
239
 \anupam{done a pass up to here. Resuming at next section.}
239
We will state some results here that we rely on in the later sections.
240 240
 
241 241
  Consider the addition function $+$ with two safe arguments, so denoted as $+(;x,y)$. It is clear that if $+(;x,y)=z$, then we have $|z| \leq \max(|x|,|y|)+1$, so $+$ is a polymax bounded function. Moreover for any $n$, the $n$th least significant bits of $z$ only depend on the $n$th least significant bits  of $x$ and $y$, so $+(;x,y)$ is a polynomial checking function (on no normal argument), with threshold $q(x,y)=0$.
242 242
  
243
  In the following we will consider $\mubc(\Phi)$ with $\Phi$ containing the function $+(;x,y)$, but write it simply as $\mubc$. Note that addition could be defined in $\bc$ (hence in $\mubc$), but not with two safe arguments because the definition would use safe recursion. We will also use the unary successor $\succ{} (;x)$, which is defined thanks to addition as  as $\succ{} (;x)=+(;x,\succ 1 0)$.
243
  Thus, we will freely add $+(;x,y)$ to the $\mubc $ framework and define unary successor $\succ{} (;x) \dfn +(;x, \succ 1 0)$.
244
%  In the following we will consider $\mubc(\Phi)$ with $\Phi$ containing the function $+(;x,y)$, but write it simply as $\mubc$. Note that addition could be defined in $\bc$ (hence in $\mubc$), but not with two safe arguments because the definition would use safe recursion. We will also use the unary successor $\succ{} (;x)$, which is defined thanks to addition as  as $\succ{} (;x)=+(;x,\succ 1 0)$.
245
%  
246
In the same way, although for more simple reasons, we may add the functions $\#$ and $|\cdot|$ that we introduce later in Sect.~\ref{sect:arithmetic} to $\mubc$ containing only normal arguments since they are polynomial-time computable.
244 247
  
245
  \anupam{also add $\#$ and $|\cdot|$, for simplicity.}
246 248
  
249
  One important closure property we will need for $\mubc $ functions, namely to define `witness functions' later on, is the following:
247 250
  \begin{lemma}
248 251
  	[Sharply bounded lemma]
249 252
  	\label{lem:sharply-bounded-recursion}
250 253
  	Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
251
  	Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
254
  	Then the characteristic functions of $\forall u \leq |v| . A(u,\vec u ; \vec x)$ and $\exists u \leq |v| . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
252 255
  \end{lemma}
253 256
  \begin{proof}
254
  	We give the $\forall$ case, the $\exists$ case being dual.
255
  	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
257
  	For the $\forall$ case, we define the characteristic function $f(v , \vec u ; \vec x)$ by predicative recursion on $v$ as:
256 258
  	\[
257 259
  	\begin{array}{rcl}
258 260
  	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
259
  	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
261
  	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (|\succ i v|, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
260 262
  	\end{array}
261 263
  	\]
264
  	The $\exists$ case is similar.
262 265
  \end{proof}
263 266
  
264
\medskip
265
\noindent
266
\textbf{Encoding of sequences.}
267
  Assume the existence of a simple pairing function for elements of fixed size: $\pair{k,l}{x}{y}$ denotes the pair $(x \mode k , y \mode l )$.
267
Finally, we will briefly outline some basic functions for (de)coding sequences. The functions we introduce here will in fact be representable in the theory $\arith^1$ that we introduce in the next section, which, along with proofs of their basic properties, will be important for the completeness result in Sect.~\ref{sect:completeness}.
268

  
269
  We assume the existence of a simple pairing function in $\bc$ for elements of fixed size: $\pair{k,l}{x}{y}$ identifies the pair $(x \mode k , y \mode l )$.
268 270
  An appropriate such function would `interleave' $x$ and $y$, adding delimiters as necessary.
269 271
  We assume that $|\pair{k,l}{x}{y}| = k+O(l)$ and $\pair{k,l}{x}{y}$ satisfies the polychecking lemma.
270
  
272
  %
271 273
  We will simply write $\pair{l}{x}{y}$ for $\pair{l,l}{x}{y}$.
272 274
  
273 275
  \begin{lemma}
274
  	[Creating sequences]
276
  	[Coding sequences]
275 277
  	\label{lem:sequence-creation}
276
  	Given a function $f(u , \vec u ; \vec x)$ there is a $\bc(f)$ function $F(l, u , \vec u ; \vec x)$ such that:
277
  	\[
278
  	F(l,u,\vec u ; \vec x)
279
  	\quad = \quad
280
  	\langle f(0, \vec u ; \vec x) \mode l , f(1, \vec u ; \vec x) \mode l , \dots , f(|u|, \vec u ; \vec x) \mode l \rangle
281
  	\]
278
  	Given a function $f(u , \vec u ; \vec x)$ there is a $\bc(f)$ function $F(l, u , \vec u ; \vec x)
279
%  	$ such that:
280
%  	\[
281
%  	F(l,u,\vec u ; \vec x)
282
 % 	\quad = \quad
283
  =
284
  	\langle \cdots \langle f(0, \vec u ; \vec x) \mode l , f(1, \vec u ; \vec x) \mode l \rangle , \cdots , f(|u|, \vec u ; \vec x) \mode l \rangle
285
  %	\]
286
  $
282 287
  \end{lemma}
283 288
  \begin{proof}
284 289
  	We simply define $F$ by safe recursion from $f$:
285 290
  	\[
286 291
  	\begin{array}{rcl}
287 292
  	F(l,0, \vec u ; \vec x) & \dfn & \langle ; f(0) \mode l \rangle \\
288
  	F(l, \succ i u , \vec u ; \vec x ) & \dfn & \pair{O(|u| l) , l}{F(l, u , \vec u ; \vec x)}{f( |\succ i u| , \vec u ; \vec x )}
293
  	F(l, \succ i u , \vec u ; \vec x ) & \dfn & \pair{p(u l) , l}{F(l, u , \vec u ; \vec x)}{f( |\succ i u| , \vec u ; \vec x )}
289 294
  	\end{array}
290 295
  	\]
291
  	where the constants for $O(|u|l)$ are sufficiently large.
296
  	where $p(u l)$ is a sufficiently large polynomial.
292 297
  \end{proof}
293 298
  
294 299
  \begin{lemma}
295 300
  	[Decoding sequences]
296 301
  	We can define $\beta(l,i;x)$ as $(i\text{th element of x}) \mode l$.	
297 302
  \end{lemma}
298
  \begin{proof}
299
  	First define $\beta (j,i;x)$ as $j$th bit of $i$th element of $x$, then use similar idea to above, by a recursion on $j$.
303
  \begin{proof}[Proof sketch]
304
  	First define $\beta (j,i;x)$ as $|j|$th bit of $|i|$th element of $x$, of the form $\bit(p(i,j) ; x)$ for some quasipolynomial $p$,\footnote{A quasipolynomial is just a polynomial that may contain $\smsh$.} then use similar idea to the proof above, concatenating the bits of the $i$th element by a recursion on $j$.
300 305
  \end{proof}
301 306
  
302
  Notice that $\beta (l,i;x)$ satisfies the polychecking lemma.
303
  
304
  We define
307
  %Notice that $\beta (l,i;x)$ satisfies the polychecking lemma.
308
  

Formats disponibles : Unified diff