Révision 229

CSL17/main.tex (revision 229)
84 84

  
85 85
%% Either use bibtex (recommended), 
86 86

  
87
\newpage
87 88
\bibliography{ph-biblio}
88 89

  
89 90
%% .. or use the thebibliography environment explicitely
CSL17/arithmetic.tex (revision 229)
125 125
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
126 126
%Todo: $+1$,  
127 127

  
128
We say that a function $f$ is \emph{represented} by a formula $A_f$ if we can prove a formula of the form $\forall ^{\normal} \vec u, \forall ^{\safe} x, \exists^{\safe}! y. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$.
128
We say that a function $f$ is \emph{represented} by a formula $A_f$ in a theory if we can prove a formula of the form $\forall ^{\normal} \vec u, \forall ^{\safe} x, \exists^{\safe}! y. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$.
129 129
 
130 130
Let us give a few examples for basic functions representable in $\arith^1$:
131 131
\begin{itemize}
......
335 335

  
336 336
As we mentioned, the fact that only $\Sigma^\safe_i$ formulae occur is due to the free-cut elimination result for first-order calculi \cite{Takeuti87,Cook:2010:LFP:1734064}, which gives a form of proof where every $\cut$ step has one of its cut formulae immediately below a non-logical step. Again, we have to adapt the $\rais$ rule a little to achieve our result, due to the fact that it has a $\exists x^\normal$ in its lower sequent. For this we consider a merge of $\rais$ and $\cut$, which allows us to directly cut the upper sequent of $\rais$ against a sequent of the form $\normal(u), A(u), \Gamma \seqar \Delta$.
337 337

  
338
Finally, as is usual in bounded arithmetic, we use distinguished rules for our relativised quantifiers, e.g.\
339
\todo{}
338
Finally, as is usual in bounded arithmetic, we use distinguished rules for our relativised quantifiers, although we use ones that satisfy the aforementioned constraints. For instance, we include the following rules, from which the remaining ones are similar:
339
\[
340
\vlinf{\rigrul{\forall}}{}{ \normal(\vec u) , \safe (\vec x), \Gamma \seqar \Delta , \forall x^\safe . A(x)}{\normal(\vec u ) , \safe (\vec x), \safe (x) , \Gamma \seqar \Delta, A(x)}
341
\quad
342
\vlinf{\rigrul{\exists}}{}{\normal(\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x^\safe . A(x)}{ \normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A(t) }
343
\]
344
\[
345
\vlinf{\lefrul{|\forall|}}{}{\normal (\vec u ) , \safe (\vec x) , s(\vec u) \leq |t(\vec u)| , \forall u^\normal \leq |t(\vec u)| . A(u) , \Gamma \seqar \Delta }{\normal (\vec u ) , \safe (\vec x) , A(t(\vec u)  ) , \Gamma \seqar \Delta  }
346
\]
347
where, in $\rigrul{\exists}$, $(\vec u ; \vec x)$ is compatible with $t$.
CSL17/preliminaries.tex (revision 229)
236 236
 
237 237
 \subsection{Some properties and extensions of $\bc$ and $\mubc$}\label{sect:somepropertiesofmubc}
238 238
 
239
 \anupam{done a pass up to here. Resuming at next section.}
239
We will state some results here that we rely on in the later sections.
240 240
 
241 241
  Consider the addition function $+$ with two safe arguments, so denoted as $+(;x,y)$. It is clear that if $+(;x,y)=z$, then we have $|z| \leq \max(|x|,|y|)+1$, so $+$ is a polymax bounded function. Moreover for any $n$, the $n$th least significant bits of $z$ only depend on the $n$th least significant bits  of $x$ and $y$, so $+(;x,y)$ is a polynomial checking function (on no normal argument), with threshold $q(x,y)=0$.
242 242
  
243
  In the following we will consider $\mubc(\Phi)$ with $\Phi$ containing the function $+(;x,y)$, but write it simply as $\mubc$. Note that addition could be defined in $\bc$ (hence in $\mubc$), but not with two safe arguments because the definition would use safe recursion. We will also use the unary successor $\succ{} (;x)$, which is defined thanks to addition as  as $\succ{} (;x)=+(;x,\succ 1 0)$.
243
  Thus, we will freely add $+(;x,y)$ to the $\mubc $ framework and define unary successor $\succ{} (;x) \dfn +(;x, \succ 1 0)$.
244
%  In the following we will consider $\mubc(\Phi)$ with $\Phi$ containing the function $+(;x,y)$, but write it simply as $\mubc$. Note that addition could be defined in $\bc$ (hence in $\mubc$), but not with two safe arguments because the definition would use safe recursion. We will also use the unary successor $\succ{} (;x)$, which is defined thanks to addition as  as $\succ{} (;x)=+(;x,\succ 1 0)$.
245
%  
246
In the same way, although for more simple reasons, we may add the functions $\#$ and $|\cdot|$ that we introduce later in Sect.~\ref{sect:arithmetic} to $\mubc$ containing only normal arguments since they are polynomial-time computable.
244 247
  
245
  \anupam{also add $\#$ and $|\cdot|$, for simplicity.}
246 248
  
249
  One important closure property we will need for $\mubc $ functions, namely to define `witness functions' later on, is the following:
247 250
  \begin{lemma}
248 251
  	[Sharply bounded lemma]
249 252
  	\label{lem:sharply-bounded-recursion}
250 253
  	Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
251
  	Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
254
  	Then the characteristic functions of $\forall u \leq |v| . A(u,\vec u ; \vec x)$ and $\exists u \leq |v| . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
252 255
  \end{lemma}
253 256
  \begin{proof}
254
  	We give the $\forall$ case, the $\exists$ case being dual.
255
  	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
257
  	For the $\forall$ case, we define the characteristic function $f(v , \vec u ; \vec x)$ by predicative recursion on $v$ as:
256 258
  	\[
257 259
  	\begin{array}{rcl}
258 260
  	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
259
  	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
261
  	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (|\succ i v|, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
260 262
  	\end{array}
261 263
  	\]
264
  	The $\exists$ case is similar.
262 265
  \end{proof}
263 266
  
264
\medskip
265
\noindent
266
\textbf{Encoding of sequences.}
267
  Assume the existence of a simple pairing function for elements of fixed size: $\pair{k,l}{x}{y}$ denotes the pair $(x \mode k , y \mode l )$.
267
Finally, we will briefly outline some basic functions for (de)coding sequences. The functions we introduce here will in fact be representable in the theory $\arith^1$ that we introduce in the next section, which, along with proofs of their basic properties, will be important for the completeness result in Sect.~\ref{sect:completeness}.
268

  
269
  We assume the existence of a simple pairing function in $\bc$ for elements of fixed size: $\pair{k,l}{x}{y}$ identifies the pair $(x \mode k , y \mode l )$.
268 270
  An appropriate such function would `interleave' $x$ and $y$, adding delimiters as necessary.
269 271
  We assume that $|\pair{k,l}{x}{y}| = k+O(l)$ and $\pair{k,l}{x}{y}$ satisfies the polychecking lemma.
270
  
272
  %
271 273
  We will simply write $\pair{l}{x}{y}$ for $\pair{l,l}{x}{y}$.
272 274
  
273 275
  \begin{lemma}
274
  	[Creating sequences]
276
  	[Coding sequences]
275 277
  	\label{lem:sequence-creation}
276
  	Given a function $f(u , \vec u ; \vec x)$ there is a $\bc(f)$ function $F(l, u , \vec u ; \vec x)$ such that:
277
  	\[
278
  	F(l,u,\vec u ; \vec x)
279
  	\quad = \quad
280
  	\langle f(0, \vec u ; \vec x) \mode l , f(1, \vec u ; \vec x) \mode l , \dots , f(|u|, \vec u ; \vec x) \mode l \rangle
281
  	\]
278
  	Given a function $f(u , \vec u ; \vec x)$ there is a $\bc(f)$ function $F(l, u , \vec u ; \vec x)
279
%  	$ such that:
280
%  	\[
281
%  	F(l,u,\vec u ; \vec x)
282
 % 	\quad = \quad
283
  =
284
  	\langle \cdots \langle f(0, \vec u ; \vec x) \mode l , f(1, \vec u ; \vec x) \mode l \rangle , \cdots , f(|u|, \vec u ; \vec x) \mode l \rangle
285
  %	\]
286
  $
282 287
  \end{lemma}
283 288
  \begin{proof}
284 289
  	We simply define $F$ by safe recursion from $f$:
285 290
  	\[
286 291
  	\begin{array}{rcl}
287 292
  	F(l,0, \vec u ; \vec x) & \dfn & \langle ; f(0) \mode l \rangle \\
288
  	F(l, \succ i u , \vec u ; \vec x ) & \dfn & \pair{O(|u| l) , l}{F(l, u , \vec u ; \vec x)}{f( |\succ i u| , \vec u ; \vec x )}
293
  	F(l, \succ i u , \vec u ; \vec x ) & \dfn & \pair{p(u l) , l}{F(l, u , \vec u ; \vec x)}{f( |\succ i u| , \vec u ; \vec x )}
289 294
  	\end{array}
290 295
  	\]
291
  	where the constants for $O(|u|l)$ are sufficiently large.
296
  	where $p(u l)$ is a sufficiently large polynomial.
292 297
  \end{proof}
293 298
  
294 299
  \begin{lemma}
295 300
  	[Decoding sequences]
296 301
  	We can define $\beta(l,i;x)$ as $(i\text{th element of x}) \mode l$.	
297 302
  \end{lemma}
298
  \begin{proof}
299
  	First define $\beta (j,i;x)$ as $j$th bit of $i$th element of $x$, then use similar idea to above, by a recursion on $j$.
303
  \begin{proof}[Proof sketch]
304
  	First define $\beta (j,i;x)$ as $|j|$th bit of $|i|$th element of $x$, of the form $\bit(p(i,j) ; x)$ for some quasipolynomial $p$,\footnote{A quasipolynomial is just a polynomial that may contain $\smsh$.} then use similar idea to the proof above, concatenating the bits of the $i$th element by a recursion on $j$.
300 305
  \end{proof}
301 306
  
302
  Notice that $\beta (l,i;x)$ satisfies the polychecking lemma.
303
  
304
  We define
307
  %Notice that $\beta (l,i;x)$ satisfies the polychecking lemma.
308
  

Formats disponibles : Unified diff