root / CSL17 / appendix-arithmetic.tex @ 229
Historique | Voir | Annoter | Télécharger (3,49 ko)
1 | 187 | pbaillot | \section{An arithmetic for the polynomial hierarchy}\label{appendix:arithmetic} |
---|---|---|---|
2 | 187 | pbaillot | |
3 | 187 | pbaillot | We give here the list of remaining axioms of $\basic$, which are directly inspired by the $\basic$ theory of Buss's bounded arithmetic \cite{Buss86book}: |
4 | 187 | pbaillot | %$\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$, |
5 | 187 | pbaillot | |
6 | 220 | adas | |
7 | 187 | pbaillot | $$ |
8 | 187 | pbaillot | %\begin{equation} |
9 | 187 | pbaillot | \begin{array}{l} |
10 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}. (y\leq x) \cimp (y \leq \succ{} x) \\ |
11 | 187 | pbaillot | \forall x^{\safe}. x \neq \succ{} x\\ |
12 | 187 | pbaillot | \forall x^{\safe}.0 \leq x\\ |
13 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}.(x\leq y \cand x \neq y) \leftrightarrow \succ{} x \leq y\\ |
14 | 187 | pbaillot | \forall x^{\safe}. x\neq 0 \cimp \succ{0}x \neq 0\\ |
15 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}. y\leq x \cor x \leq y\\ |
16 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}. x\leq y \cand y\leq x \cimp x=y\\ |
17 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}, z^{\safe}. x\leq y \cand y\leq z \cimp x\leq z\\ |
18 | 187 | pbaillot | |0|=0\\ |
19 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}.x\neq 0 \cimp |\succ{0}x|=\succ{}( |x|) \cand |\succ{0}x|= \succ{}(|x|) \\ |
20 | 187 | pbaillot | |\succ{}0|=\succ{} 0\\ |
21 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}. x\leq y \cimp |x|\leq |y|\\ |
22 | 187 | pbaillot | \forall x^{\safe}, y^{\normal}. |x\smsh y|=\succ{}( |x|\cdot |y|)\\ |
23 | 187 | pbaillot | \forall y^{\normal}. 0 \smsh y=\succ{} 0\\ |
24 | 187 | pbaillot | \forall x^{\safe}. x\neq 0 \cimp 1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)\\ |
25 | 187 | pbaillot | \forall x^{\normal}, y^{\normal}. x \smsh y = y \smsh x\\ |
26 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}, z^{\normal}. |x|= |y| \cimp x\smsh z = y\smsh z\\ |
27 | 187 | pbaillot | \forall x^{\safe}, u^{\safe}, v^{\safe}, y^{\normal}. |x|= |u|+ |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y)\\ |
28 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}. x\leq x+y\\ |
29 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}. x\leq y \cand x\neq y \cimp \succ{}(\succ{0}x) \leq \succ{0}y \cand \succ{}(\succ{0}x) \neq \succ{0}y\\ |
30 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}. x+y=y+x\\ |
31 | 187 | pbaillot | \forall x^{\safe}. x+0=x\\ |
32 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}. x+\succ{}y=\succ{}(x+y)\\ |
33 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}, z^{\safe}. (x+y)+z=x+(y+z)\\ |
34 | 187 | pbaillot | \forall x^{\safe}, y^{\safe}, z^{\safe}. x+y \leq x+z \leftrightarrow y\leq z\\ |
35 | 187 | pbaillot | \forall x^{\normal} x\cdot 0=0\\ |
36 | 187 | pbaillot | \forall x^{\normal}, y^{\safe}. x\cdot(\succ{}y)=(x\cdot y)+x\\ |
37 | 187 | pbaillot | \forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x\\ |
38 | 187 | pbaillot | \forall x^{\normal}, y^{\safe}, z^{\safe}. x\cdot(y+z)=(x\cdot y)+(x\cdot z)\\ |
39 | 187 | pbaillot | \forall x^{\normal}, y^{\safe}, z^{\safe}. x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \leftrightarrow y\leq z)\\ |
40 | 187 | pbaillot | \forall x^{\normal} x\neq 0 \cimp |x|=\succ{}(\hlf{x})\\ |
41 | 187 | pbaillot | \forall x^{\safe}, y^{\normal}. x= \hlf{y} \leftrightarrow (\succ{0}x=y \cor \succ{}(\succ{0}x)=y) |
42 | 187 | pbaillot | \end{array} |
43 | 187 | pbaillot | %\end{equation} |
44 | 227 | adas | $$ |
45 | 227 | adas | |
46 | 227 | adas | It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic: |
47 | 227 | adas | \begin{proposition} |
48 | 227 | adas | [Length induction] |
49 | 227 | adas | The axiom schema of formulae, |
50 | 227 | adas | \begin{equation} |
51 | 227 | adas | \label{eqn:lind} |
52 | 227 | adas | ( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|) |
53 | 227 | adas | \end{equation} |
54 | 227 | adas | for formulae $A \in \Sigma^\safe_i$ |
55 | 227 | adas | is equivalent to $\cpind{\Sigma^\safe_i}$. |
56 | 227 | adas | \end{proposition} |
57 | 227 | adas | \begin{proof} |
58 | 227 | adas | Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$. |
59 | 227 | adas | Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$. |
60 | 227 | adas | \end{proof} |
61 | 227 | adas | |
62 | 227 | adas | Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$. |
63 | 227 | adas | We will freely use this in place of polynomial induction whenever it is convenient. |