Révision 228
CSL17/arithmetic.tex (revision 228) | ||
---|---|---|
165 | 165 |
\begin{figure} |
166 | 166 |
\[ |
167 | 167 |
\small |
168 |
\hspace{-1.5em} |
|
168 | 169 |
\begin{array}{l} |
169 | 170 |
\begin{array}{cccc} |
170 | 171 |
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
... | ... | |
172 | 173 |
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{} |
173 | 174 |
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
174 | 175 |
\vlinf{id}{}{\Gamma, p \seqar p, \Delta }{} |
175 |
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta} |
|
176 |
&& |
|
176 |
& \vliinf{cut}{}{\Gamma, \Sigma \seqar \Delta, \Pi }{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
|
177 |
& \vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta} |
|
178 |
& |
|
179 |
|
|
180 |
\vlinf{\rigrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta} |
|
181 |
\\ |
|
182 |
|
|
183 |
\noalign{\bigskip} |
|
184 |
%\text{Structural:} & & & \\ |
|
185 |
%\noalign{\bigskip} |
|
186 |
|
|
187 |
\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta} |
|
188 |
& |
|
189 |
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta} |
|
190 |
& |
|
191 |
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta} |
|
192 |
& |
|
193 |
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A} |
|
194 |
\\ |
|
195 |
\noalign{\bigskip} |
|
196 |
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
|
197 |
& |
|
198 |
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
|
199 |
& |
|
200 |
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
|
201 |
& |
|
202 |
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } |
|
177 | 203 |
\\ |
178 | 204 |
\noalign{\bigskip} |
179 | 205 |
%\noalign{\bigskip} |
180 |
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
|
|
206 |
\vliinf{\lefrul{\cor}}{}{\Gamma, \Sigma, A \cor B \seqar \Delta, \Pi}{\Gamma , A \seqar \Delta}{\Sigma, B \seqar \Pi}
|
|
181 | 207 |
& |
182 | 208 |
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta} |
183 | 209 |
& |
... | ... | |
187 | 213 |
& |
188 | 214 |
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B} |
189 | 215 |
%\quad |
190 |
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
|
191 |
\\ |
|
192 |
\noalign{\bigskip} |
|
193 |
|
|
194 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta} |
|
195 |
& |
|
196 |
|
|
197 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta} |
|
198 |
& |
|
199 |
& |
|
200 |
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta} |
|
201 |
%& |
|
202 |
% |
|
203 |
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B} |
|
204 |
|
|
205 |
|
|
206 |
\\ |
|
207 |
|
|
208 |
\noalign{\bigskip} |
|
209 |
%\text{Structural:} & & & \\ |
|
216 |
\vliinf{\rigrul{\cand}}{}{\Gamma, \Sigma \seqar \Delta, \Pi, A \cand B }{\Gamma \seqar \Delta, A}{\Sigma \seqar \Pi, B} |
|
210 | 217 |
%\noalign{\bigskip} |
211 |
|
|
212 |
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta} |
|
213 |
%& |
|
214 |
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta} |
|
215 |
%& |
|
216 |
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta} |
|
217 |
& |
|
218 |
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A} |
|
219 |
& |
|
220 |
& |
|
221 |
\\ |
|
222 |
\noalign{\bigskip} |
|
223 |
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
|
224 |
& |
|
225 |
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
|
226 |
& |
|
227 |
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
|
228 |
& |
|
229 |
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\ |
|
230 |
%\noalign{\bigskip} |
|
231 | 218 |
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&& |
232 | 219 |
\end{array} |
233 | 220 |
\end{array} |
... | ... | |
344 | 331 |
\end{theorem} |
345 | 332 |
|
346 | 333 |
Strictly speaking, we must alter some of the sequent rules a little to arrive at this normal form. For instance the $\pind$ rule would have $\normal(\vec u)$ in its lower sequent rather than $\normal (t(\vec u))$. The latter is a consequence of the former already in $\basic$. |
347 |
The proof of this result also relies on a heavy use of the structural rules, contraction and weakening, to ensure that we always have a complete and compatible typing on the LHS of a sequent. This is similar to what is done in \cite{OstrinWainer05} where they use a $G3$ style calculus to manage such structural manipulations. |
|
334 |
The proof of this result also relies on a heavy use of the structural rules, contraction and weakening, to ensure that we always have a complete and compatible sorting of variables on the LHS of a sequent. This is similar to what is done in \cite{OstrinWainer05} where they use a $G3$ style calculus to manage such structural manipulations. |
|
335 |
|
|
336 |
As we mentioned, the fact that only $\Sigma^\safe_i$ formulae occur is due to the free-cut elimination result for first-order calculi \cite{Takeuti87,Cook:2010:LFP:1734064}, which gives a form of proof where every $\cut$ step has one of its cut formulae immediately below a non-logical step. Again, we have to adapt the $\rais$ rule a little to achieve our result, due to the fact that it has a $\exists x^\normal$ in its lower sequent. For this we consider a merge of $\rais$ and $\cut$, which allows us to directly cut the upper sequent of $\rais$ against a sequent of the form $\normal(u), A(u), \Gamma \seqar \Delta$. |
|
337 |
|
|
338 |
Finally, as is usual in bounded arithmetic, we use distinguished rules for our relativised quantifiers, e.g.\ |
|
339 |
\todo{} |
Formats disponibles : Unified diff