root / CSL17 / appendix-arithmetic.tex @ 227
Historique | Voir | Annoter | Télécharger (3,49 ko)
1 |
\section{An arithmetic for the polynomial hierarchy}\label{appendix:arithmetic} |
---|---|
2 |
|
3 |
We give here the list of remaining axioms of $\basic$, which are directly inspired by the $\basic$ theory of Buss's bounded arithmetic \cite{Buss86book}: |
4 |
%$\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$, |
5 |
|
6 |
|
7 |
$$ |
8 |
%\begin{equation} |
9 |
\begin{array}{l} |
10 |
\forall x^{\safe}, y^{\safe}. (y\leq x) \cimp (y \leq \succ{} x) \\ |
11 |
\forall x^{\safe}. x \neq \succ{} x\\ |
12 |
\forall x^{\safe}.0 \leq x\\ |
13 |
\forall x^{\safe}, y^{\safe}.(x\leq y \cand x \neq y) \leftrightarrow \succ{} x \leq y\\ |
14 |
\forall x^{\safe}. x\neq 0 \cimp \succ{0}x \neq 0\\ |
15 |
\forall x^{\safe}, y^{\safe}. y\leq x \cor x \leq y\\ |
16 |
\forall x^{\safe}, y^{\safe}. x\leq y \cand y\leq x \cimp x=y\\ |
17 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. x\leq y \cand y\leq z \cimp x\leq z\\ |
18 |
|0|=0\\ |
19 |
\forall x^{\safe}, y^{\safe}.x\neq 0 \cimp |\succ{0}x|=\succ{}( |x|) \cand |\succ{0}x|= \succ{}(|x|) \\ |
20 |
|\succ{}0|=\succ{} 0\\ |
21 |
\forall x^{\safe}, y^{\safe}. x\leq y \cimp |x|\leq |y|\\ |
22 |
\forall x^{\safe}, y^{\normal}. |x\smsh y|=\succ{}( |x|\cdot |y|)\\ |
23 |
\forall y^{\normal}. 0 \smsh y=\succ{} 0\\ |
24 |
\forall x^{\safe}. x\neq 0 \cimp 1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)\\ |
25 |
\forall x^{\normal}, y^{\normal}. x \smsh y = y \smsh x\\ |
26 |
\forall x^{\safe}, y^{\safe}, z^{\normal}. |x|= |y| \cimp x\smsh z = y\smsh z\\ |
27 |
\forall x^{\safe}, u^{\safe}, v^{\safe}, y^{\normal}. |x|= |u|+ |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y)\\ |
28 |
\forall x^{\safe}, y^{\safe}. x\leq x+y\\ |
29 |
\forall x^{\safe}, y^{\safe}. x\leq y \cand x\neq y \cimp \succ{}(\succ{0}x) \leq \succ{0}y \cand \succ{}(\succ{0}x) \neq \succ{0}y\\ |
30 |
\forall x^{\safe}, y^{\safe}. x+y=y+x\\ |
31 |
\forall x^{\safe}. x+0=x\\ |
32 |
\forall x^{\safe}, y^{\safe}. x+\succ{}y=\succ{}(x+y)\\ |
33 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. (x+y)+z=x+(y+z)\\ |
34 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. x+y \leq x+z \leftrightarrow y\leq z\\ |
35 |
\forall x^{\normal} x\cdot 0=0\\ |
36 |
\forall x^{\normal}, y^{\safe}. x\cdot(\succ{}y)=(x\cdot y)+x\\ |
37 |
\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x\\ |
38 |
\forall x^{\normal}, y^{\safe}, z^{\safe}. x\cdot(y+z)=(x\cdot y)+(x\cdot z)\\ |
39 |
\forall x^{\normal}, y^{\safe}, z^{\safe}. x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \leftrightarrow y\leq z)\\ |
40 |
\forall x^{\normal} x\neq 0 \cimp |x|=\succ{}(\hlf{x})\\ |
41 |
\forall x^{\safe}, y^{\normal}. x= \hlf{y} \leftrightarrow (\succ{0}x=y \cor \succ{}(\succ{0}x)=y) |
42 |
\end{array} |
43 |
%\end{equation} |
44 |
$$ |
45 |
|
46 |
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic: |
47 |
\begin{proposition} |
48 |
[Length induction] |
49 |
The axiom schema of formulae, |
50 |
\begin{equation} |
51 |
\label{eqn:lind} |
52 |
( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|) |
53 |
\end{equation} |
54 |
for formulae $A \in \Sigma^\safe_i$ |
55 |
is equivalent to $\cpind{\Sigma^\safe_i}$. |
56 |
\end{proposition} |
57 |
\begin{proof} |
58 |
Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$. |
59 |
Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$. |
60 |
\end{proof} |
61 |
|
62 |
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$. |
63 |
We will freely use this in place of polynomial induction whenever it is convenient. |