Révision 227 CSL17/appendix-sequent-calculus.tex
appendix-sequent-calculus.tex (revision 227) | ||
---|---|---|
2 | 2 |
\label{sect:app-sequent-calculus} |
3 | 3 |
|
4 | 4 |
|
5 |
\begin{figure} |
|
6 |
\[ |
|
7 |
\small |
|
8 |
\begin{array}{l} |
|
9 |
\begin{array}{cccc} |
|
10 |
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
|
11 |
%& \vlinf{\id}{}{p \seqar p}{} |
|
12 |
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{} |
|
13 |
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
|
14 |
\vlinf{id}{}{\Gamma, p \seqar p, \Delta }{} |
|
15 |
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta} |
|
16 |
&& |
|
17 |
\\ |
|
18 |
\noalign{\bigskip} |
|
19 |
%\noalign{\bigskip} |
|
20 |
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta} |
|
21 |
& |
|
22 |
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta} |
|
23 |
& |
|
24 |
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta} |
|
25 |
%\quad |
|
26 |
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B} |
|
27 |
& |
|
28 |
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B} |
|
29 |
%\quad |
|
30 |
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
|
31 |
\\ |
|
32 |
\noalign{\bigskip} |
|
5 |
|
|
33 | 6 |
|
34 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta} |
|
35 |
& |
|
36 | 7 |
|
37 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta} |
|
38 |
& |
|
39 |
& |
|
40 |
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta} |
|
41 |
%& |
|
42 |
% |
|
43 |
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B} |
|
44 | 8 |
|
45 |
|
|
46 |
\\ |
|
47 |
|
|
48 |
\noalign{\bigskip} |
|
49 |
%\text{Structural:} & & & \\ |
|
50 |
%\noalign{\bigskip} |
|
51 |
|
|
52 |
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta} |
|
53 |
%& |
|
54 |
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta} |
|
55 |
%& |
|
56 |
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta} |
|
57 |
& |
|
58 |
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A} |
|
59 |
& |
|
60 |
& |
|
61 |
\\ |
|
62 |
\noalign{\bigskip} |
|
63 |
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
|
64 |
& |
|
65 |
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
|
66 |
& |
|
67 |
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
|
68 |
& |
|
69 |
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\ |
|
70 |
%\noalign{\bigskip} |
|
71 |
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&& |
|
72 |
\end{array} |
|
73 |
\end{array} |
|
74 |
\] |
|
75 |
\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus} |
|
76 |
\end{figure} |
|
77 |
|
|
78 |
|
|
79 |
|
|
80 | 9 |
\begin{lemma} |
81 | 10 |
For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable. |
82 | 11 |
\end{lemma} |
Formats disponibles : Unified diff