Révision 227 CSL17/appendix-arithmetic.tex
appendix-arithmetic.tex (revision 227) | ||
---|---|---|
4 | 4 |
%$\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$, |
5 | 5 |
|
6 | 6 |
|
7 |
\[ |
|
8 |
\begin{array}{l} |
|
9 |
\safe (0) \\ |
|
10 |
\forall x^\safe . \safe (\succ{} x) \\ |
|
11 |
\forall x^\safe . 0 \neq \succ{} (x) \\ |
|
12 |
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\ |
|
13 |
\forall x^\safe . (x = 0 \cor \exists y^\safe.\ x = \succ{} y )\\ |
|
14 |
\forall x^\safe, y^\safe . \safe(x+y)\\ |
|
15 |
\forall u^\normal, x^\safe . \safe(u\times x) \\ |
|
16 |
\forall u^\normal , v^\normal . \safe (u \smsh v)\\ |
|
17 |
\forall u^\normal \safe(u) \\ |
|
18 |
\forall u^\safe \safe(\hlf{u})\\ |
|
19 |
\forall u^\normal \safe(|x|) |
|
20 |
\end{array} |
|
21 |
\] |
|
22 |
|
|
23 | 7 |
$$ |
24 | 8 |
%\begin{equation} |
25 | 9 |
\begin{array}{l} |
... | ... | |
57 | 41 |
\forall x^{\safe}, y^{\normal}. x= \hlf{y} \leftrightarrow (\succ{0}x=y \cor \succ{}(\succ{0}x)=y) |
58 | 42 |
\end{array} |
59 | 43 |
%\end{equation} |
60 |
$$ |
|
44 |
$$ |
|
45 |
|
|
46 |
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic: |
|
47 |
\begin{proposition} |
|
48 |
[Length induction] |
|
49 |
The axiom schema of formulae, |
|
50 |
\begin{equation} |
|
51 |
\label{eqn:lind} |
|
52 |
( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|) |
|
53 |
\end{equation} |
|
54 |
for formulae $A \in \Sigma^\safe_i$ |
|
55 |
is equivalent to $\cpind{\Sigma^\safe_i}$. |
|
56 |
\end{proposition} |
|
57 |
\begin{proof} |
|
58 |
Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$. |
|
59 |
Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$. |
|
60 |
\end{proof} |
|
61 |
|
|
62 |
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$. |
|
63 |
We will freely use this in place of polynomial induction whenever it is convenient. |
Formats disponibles : Unified diff