Révision 227 CSL17/appendix-arithmetic.tex

appendix-arithmetic.tex (revision 227)
4 4
%$\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$,
5 5
 
6 6
 
7
 \[
8
 \begin{array}{l}
9
 \safe (0) \\
10
 \forall x^\safe . \safe (\succ{} x) \\
11
 \forall x^\safe . 0 \neq \succ{} (x) \\
12
 \forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
13
 \forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )\\
14
 \forall x^\safe, y^\safe . \safe(x+y)\\
15
 \forall u^\normal, x^\safe . \safe(u\times x) \\
16
 \forall u^\normal , v^\normal . \safe (u \smsh v)\\
17
 \forall u^\normal \safe(u) \\
18
 \forall u^\safe \safe(\hlf{u})\\
19
 \forall u^\normal \safe(|x|)  
20
 \end{array}
21
 \]
22
 
23 7
$$
24 8
%\begin{equation}
25 9
\begin{array}{l}
......
57 41
   \forall x^{\safe}, y^{\normal}.     x= \hlf{y} \leftrightarrow (\succ{0}x=y \cor \succ{}(\succ{0}x)=y)
58 42
 \end{array}
59 43
%\end{equation}
60
$$
44
$$
45

  
46
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic:
47
\begin{proposition}
48
	[Length induction]
49
	The axiom schema of formulae,
50
	\begin{equation}
51
	\label{eqn:lind}
52
	( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|)
53
	\end{equation}
54
	for formulae $A \in \Sigma^\safe_i$
55
	is equivalent to $\cpind{\Sigma^\safe_i}$.
56
\end{proposition}
57
\begin{proof}
58
	Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$.
59
	Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$.
60
\end{proof}
61

  
62
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$.
63
We will freely use this in place of polynomial induction whenever it is convenient.

Formats disponibles : Unified diff