Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 227

Historique | Voir | Annoter | Télécharger (18,62 ko)

1 206 pbaillot
\section{An arithmetic for the polynomial hierarchy}\label{sect:arithmetic}
2 182 pbaillot
%Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$.
3 220 adas
Our base language consists of constant and function symbols $\{ 0, \succ{} , + , \times, \smsh , |\cdot|, \hlf{}.\}$ and predicate symbols
4 220 adas
 $\{\leq, \safe, \normal \}$. The function symbols are interpreted in the intuitive way, with $|x|$ denoting the length of $x$ seen as a binary string, and $\smash(x,y)$ denoting $2^{|x||y|}$, so a string of length $|x||y|+1$.
5 220 adas
 We may write $\succ{0}(x)$ for $2\cdot x$, $\succ{1}(x)$ for $\succ{}(2\cdot x)$, and $\pred (x)$ for $\hlf{x}$, to better relate to the $\bc$ setting.
6 218 pbaillot
7 220 adas
We consider formulas of classical first-order logic, over $\neg$, $\cand$, $\cor$, $\forall$, $\exists$, along with usual shorthands and abbreviations.
8 220 adas
%The formula $A \cimp B$ will be a notation for $\neg A \cor B$.
9 220 adas
%We will also use as shorthand notations:
10 220 adas
%$$ (s=t) = (s\leq t) \cand (t\leq s), \quad (s\neq t) = \neg(s=t).$$
11 220 adas
\textit{Atomic formulas} formulas are of the form $(s\leq t)$, for terms $s,t$.
12 220 adas
 We will assume, without loss of generality, that formulas are in \textit{De Morgan normal form}, that is to say that in formulas negation can only occur on atomic formulas, and that there is not any occurrence of a subformula of the form $\neg \neg A$.
13 227 adas
14 227 adas
15 227 adas
 We write $\exists x^{N_i} . A$ or $\forall x^{N_i} . A$ for $\exists x . (N_i (x) \cand A)$ and $\forall x . (N_i (x) \cimp A)$ respectively. We refer to these as \emph{safe} quantifiers.
16 227 adas
 We also write $\exists x^\normal \leq |t| . A$ for $\exists x^\normal . ( x \leq |t| \cand A )$ and $\forall x^\normal \leq |t|. A $ for $\forall x^\normal. (x \leq |t| \cimp A )$. We refer to these as \emph{sharply bounded} quantifiers, as in bounded arithmetic.
17 156 adas
18 183 pbaillot
19 220 adas
The theories we introduce are directly inspired from bounded arithmetic, namely the theories $S^i_2$.
20 220 adas
We include a similar set of axioms for direct comparison, although in our setting these are not minimal.
21 220 adas
Indeed, $\#$ can be defined using induction in our setting.
22 183 pbaillot
23 220 adas
The $\basic$ axioms of bounded arithmetic give the inductive definitions and interrelationships of the various function symbols.
24 220 adas
It also states the fundamental algebraic properties, i.e.\ $(0,\succ{ } )$ is a free algebra, and, for us, it will also give us certain `typing' information for our function symbols based on their $\bc$ specification, with safe inputs ranging over $\safe$ and normal ones over $\normal$.
25 227 adas
For instance, we include the following axioms:\footnote{Later some of these will be redundant, for instance $\safe (u \times x) $ and $\safe (u \smsh v)$ are consequences of $\Sigma^\safe_i$-$\pind$, but $\safe (x + y)$ is not since both inputs are safe and so we cannot induct.}
26 227 adas
\[
27 227 adas
\begin{array}{l}
28 227 adas
\forall u^\normal. \safe(u) \\
29 227 adas
\safe (0) \\
30 227 adas
\forall x^\safe . \safe (\succ{} x) \\
31 227 adas
\forall x^\safe . 0 \neq \succ{} (x) \\
32 227 adas
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
33 227 adas
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )
34 227 adas
\end{array}
35 227 adas
\qquad
36 227 adas
\begin{array}{l}
37 227 adas
\forall x^\safe, y^\safe . \safe(x+y)\\
38 227 adas
\forall u^\normal, x^\safe . \safe(u\times x) \\
39 227 adas
\forall u^\normal , v^\normal . \safe (u \smsh v)\\
40 227 adas
\forall u^\safe .\safe(\hlf{u})\\
41 227 adas
\forall u^\normal .\safe(|x|)
42 227 adas
\end{array}
43 227 adas
\]
44 227 adas
Notice that we have $\normal \subseteq \safe$.
45 227 adas
A full list of our $\basic$ axioms can be found in Appendix \ref{appendix:arithmetic}.
46 168 adas
47 227 adas
%\begin{definition}
48 227 adas
%	[Basic theory]
49 227 adas
%	The theory $\basic$ consists of the axioms from Appendix \ref{appendix:arithmetic}.
50 227 adas
%	\end{definition}
51 172 adas
52 227 adas
53 227 adas
%Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$.
54 179 pbaillot
55 227 adas
%\begin{definition}
56 227 adas
%[Derived functions and notations]
57 227 adas
%We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
58 227 adas
%We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
59 227 adas
%
60 227 adas
%Need $bit$, $\beta$ , $\pair{}{}{}$.
61 227 adas
%\end{definition}
62 227 adas
%
63 227 adas
%(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
64 227 adas
%
65 227 adas
%Use base theory + sharply bounded quantifiers.
66 176 adas
67 172 adas
68 157 adas
\begin{definition}
69 157 adas
[Quantifier hierarchy]
70 227 adas
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded and where $\safe , \normal$ do not occur free.
71 176 adas
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
72 176 adas
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
73 157 adas
\end{definition}
74 157 adas
75 168 adas
76 227 adas
Notice that the criterion that $\safe$ does not occur free is not a real restriction, since we can write $\safe (x)$ as $\exists y^\safe . y=x$.
77 227 adas
The criterion is purely to give an appropriate definition of the hierarchy above.
78 227 adas
79 227 adas
%\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
80 227 adas
81 227 adas
82 227 adas
\begin{definition}
83 177 pbaillot
[Polynomial induction]
84 227 adas
\label{def:polynomialinduction}
85 227 adas
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms, for each formula $A(x)$:
86 177 pbaillot
\[
87 227 adas
\left(
88 177 pbaillot
A(0)
89 227 adas
\cand (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
90 227 adas
\cand  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
91 227 adas
\right)
92 177 pbaillot
\cimp  \forall x^{\normal} . A(x)
93 177 pbaillot
\]
94 227 adas
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of $\pind$ axioms where $A(x) \in \Xi$.
95 168 adas
96 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
97 177 pbaillot
\end{definition}
98 177 pbaillot
99 177 pbaillot
100 178 pbaillot
\begin{definition}\label{def:ariththeory}
101 227 adas
Define the theory $\arith^i$ consisting of the $\basic$ axioms, $\cpind{\Sigma^\safe_i } $,
102 227 adas
%\begin{itemize}
103 227 adas
%	\item $\basic$;
104 227 adas
%	\item $\cpind{\Sigma^\safe_i } $:
105 227 adas
%\end{itemize}
106 227 adas
and a particular inference rule, called $\rais$, for closed formulas $\forall x. \exists y. A$:
107 168 adas
\[
108 227 adas
 \dfrac{\proves \forall \vec x^\normal . \exists  y^\safe .  A }{ \proves \forall \vec x^\normal .\exists y^\normal . A}
109 168 adas
\]
110 227 adas
We will write $\arith^i \proves A$ if $A$ is a logical consequence of the axioms of $\arith^i$, in the usual way.
111 157 adas
\end{definition}
112 227 adas
%\patrick{I think in the definition of  $\arith^i$ we should impose that the formulas considered are \textit{integer positive}, that is to say that the only negative occurrences of atoms $\safe(t)$, $\normal(t)$ are those occurring in $\forall^{\safe}$ and $\forall^{\normal}$.  Indeed I don't think this can be just proved to be a consequence of a kind of 'normal form' of proofs, as we had discussed (see sect 4.4)}
113 227 adas
%
114 227 adas
%\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
115 182 pbaillot
116 227 adas
\begin{remark}
117 227 adas
Notice that $\rais$ looks similar to the $K$ rule from the calculus for the modal logic $S4$, and indeed we believe there is a way to present these results in such a framework.
118 227 adas
However, the proof theory of first-order modal logics, in particular free-cut elimination results used for witnessing, is not sufficiently developed to carry out such an exposition.
119 227 adas
	\end{remark}
120 157 adas
121 194 adas
122 194 adas
123 157 adas
124 168 adas
125 199 pbaillot
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
126 214 pbaillot
%Todo: $+1$,
127 168 adas
128 227 adas
We say that a function $f$ is \emph{represented} by a formula $A_f$ if we can prove a formula of the form $\forall ^{\normal} \vec u, \forall ^{\safe} x, \exists^{\safe}! y. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the output of $f(\vec u; \vec x)$.
129 214 pbaillot
130 227 adas
Let us give a few examples for basic functions representable in $\arith^1$:
131 214 pbaillot
\begin{itemize}
132 215 pbaillot
\item Projection $\pi_k^{m,n}$: $\forall^{\normal} u_1, \dots, u_m,  \forall^{\safe} x_{m+1}, \dots, x_{m+n}, \exists^{\safe} y. y=x_k$.
133 215 pbaillot
\item Successor $\succ{}$: $\forall^{\safe} x, \exists^{\safe} y. y=x+1.$. The formulas for the binary successors $\succ{0}$, $\succ{1}$ and the constant functions $\epsilon^k$ are defined in a similar way.
134 215 pbaillot
\item Predecessor $p$:   $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$
135 214 pbaillot
\item Conditional $C$:
136 214 pbaillot
$$\begin{array}{ll}
137 214 pbaillot
\forall^{\safe} x, y_{\epsilon}, y_0, y_1, \exists^{\safe} y. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
138 214 pbaillot
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{0}z) \cand (y=y_0))\\
139 214 pbaillot
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{1}z) \cand (y=y_1)))\
140 214 pbaillot
\end{array}
141 214 pbaillot
$$
142 216 pbaillot
\item Addition:
143 216 pbaillot
$\forall^{\safe} x, y,  \exists^{\safe} z. z=x+y$.
144 217 pbaillot
\item Prefix:
145 217 pbaillot
146 217 pbaillot
  This is a predicate that we will need for technical reasons, in the completeness proof. The predicate $\pref(k,x,y)$ holds if the prefix of string $x$
147 217 pbaillot
  of length $k$ is $y$. It is defined as:
148 217 pbaillot
  $$\begin{array}{ll}
149 217 pbaillot
\exists^{\safe} z, \exists^{\normal} l\leq |x|. & (k+l= |x|\\
150 217 pbaillot
                                                                                                   & \cand \; |z|=l\\
151 217 pbaillot
                                                                                                   & \cand \; x=y\smsh(2,l)+z)
152 217 pbaillot
                                                                                                   \end{array}
153 217 pbaillot
$$
154 217 pbaillot
\item The following predicates will also be needed in proofs:
155 217 pbaillot
156 217 pbaillot
$\zerobit(x,k)$ (resp. $\onebit(x,k)$) holds iff the $k$th bit of $x$ is 0 (resp. 1). The predicate $\zerobit(x,k)$  can be
157 217 pbaillot
defined by:
158 217 pbaillot
$$ \exists^{\safe} y.(\pref(k,x,y) \cand C(y,0,1,0)).$$
159 214 pbaillot
\end{itemize}
160 214 pbaillot
161 215 pbaillot
162 168 adas
163 168 adas
164 168 adas
\subsection{A sequent calculus presentation}
165 227 adas
\begin{figure}
166 227 adas
	\[
167 227 adas
	\small
168 227 adas
	\begin{array}{l}
169 227 adas
	\begin{array}{cccc}
170 227 adas
	%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
171 227 adas
	%& \vlinf{\id}{}{p \seqar p}{}
172 227 adas
	%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
173 227 adas
	%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
174 227 adas
	\vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
175 227 adas
	& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
176 227 adas
	&&
177 227 adas
	\\
178 227 adas
	\noalign{\bigskip}
179 227 adas
	%\noalign{\bigskip}
180 227 adas
	\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
181 227 adas
	&
182 227 adas
	\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
183 227 adas
	&
184 227 adas
	%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
185 227 adas
	%\quad
186 227 adas
	\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
187 227 adas
	&
188 227 adas
	%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
189 227 adas
	%\quad
190 227 adas
	\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
191 227 adas
	\\
192 227 adas
	\noalign{\bigskip}
193 227 adas
194 227 adas
	\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
195 227 adas
	&
196 227 adas
197 227 adas
	\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
198 227 adas
	&
199 227 adas
	&
200 227 adas
	%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
201 227 adas
	%&
202 227 adas
	%
203 227 adas
	%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
204 227 adas
205 227 adas
206 227 adas
	\\
207 227 adas
208 227 adas
	\noalign{\bigskip}
209 227 adas
	%\text{Structural:} & & & \\
210 227 adas
	%\noalign{\bigskip}
211 227 adas
212 227 adas
	%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
213 227 adas
	%&
214 227 adas
	\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
215 227 adas
	%&
216 227 adas
	%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
217 227 adas
	&
218 227 adas
	\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
219 227 adas
	&
220 227 adas
	&
221 227 adas
	\\
222 227 adas
	\noalign{\bigskip}
223 227 adas
	\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
224 227 adas
	&
225 227 adas
	\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
226 227 adas
	&
227 227 adas
	\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
228 227 adas
	&
229 227 adas
	\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
230 227 adas
	%\noalign{\bigskip}
231 227 adas
	% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
232 227 adas
	\end{array}
233 227 adas
	\end{array}
234 227 adas
	\]
235 227 adas
	\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus}
236 227 adas
\end{figure}
237 168 adas
238 227 adas
In order to carry out witness extraction for proofs of $\arith^i$, it will be useful to work with a \emph{sequent calculus} representation of proofs.
239 227 adas
Such systems exhibit strong normal forms, notably `free-cut free' proofs, and so are widely used for the `witness function method' for extracting programs from proofs.
240 227 adas
We introduce the required technical material here only briefly, due to space constraints.
241 179 pbaillot
242 227 adas
A \emph{sequent} is an expression $\Gamma \seqar \Delta$ where $\Gamma$ and $\Delta$ are multisets of formulas.
243 227 adas
The inference rules of the sequent calculus $\LK$ are displayed in Fig.~\ref{fig:sequentcalculus}.
244 227 adas
Of course, we have the following:
245 227 adas
\begin{proposition}
246 227 adas
	$A$ is a first-order theorem if and only if there is an $\LK$ proof of $\seqar A$.
247 227 adas
\end{proposition}
248 227 adas
249 221 adas
%We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
250 221 adas
% \[
251 221 adas
% \begin{array}{cc}
252 221 adas
%    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
253 221 adas
%\end{array}
254 177 pbaillot
%\]
255 221 adas
% where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
256 221 adas
% \begin{enumerate}
257 221 adas
% \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
258 221 adas
%$ \Gamma,  \Pi$ are called \textit{context formulas}.
259 221 adas
%\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
260 221 adas
%    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
261 221 adas
%   \end{enumerate}
262 221 adas
%
263 221 adas
%%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
264 221 adas
% Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
265 177 pbaillot
%
266 221 adas
%%\begin{definition}
267 221 adas
%%[Polynomial induction]
268 221 adas
%%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
269 221 adas
%%\[
270 221 adas
%%A(0)
271 221 adas
%%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
272 221 adas
%%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
273 221 adas
%%\cimp  \forall x^{\normal} . A(x)
274 221 adas
%%\]
275 221 adas
%%for each formula $A(x)$.
276 221 adas
%%
277 221 adas
%%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
278 221 adas
%%
279 221 adas
%%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
280 221 adas
%%\end{definition}
281 177 pbaillot
%
282 221 adas
%As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$.
283 174 pbaillot
284 227 adas
We extend this purely logical calculus with certain non-logical rules and initial sequents corresponding to our theories $\arith^i$.
285 221 adas
 For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction} is represented by the following rule:
286 177 pbaillot
\begin{equation}
287 177 pbaillot
\label{eqn:ind-rule}
288 177 pbaillot
\small
289 177 pbaillot
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
290 177 pbaillot
\end{equation}
291 227 adas
where $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent.
292 227 adas
%
293 227 adas
Similarly the $\rais$ inference rule of Dfn.~\ref{def:ariththeory} is represented by the nonlogical rule,
294 177 pbaillot
 \[
295 177 pbaillot
 \begin{array}{cc}
296 179 pbaillot
    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \exists  y^\normal .  A }{  \normal(t_1), \dots, \normal(t_k) \seqar \exists  y^\safe .  A}
297 177 pbaillot
\end{array}
298 177 pbaillot
\]
299 179 pbaillot
300 179 pbaillot
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general:
301 179 pbaillot
%\[
302 179 pbaillot
% \begin{array}{cc}
303 179 pbaillot
%    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \normal(t) }{  \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)}
304 179 pbaillot
%\end{array}
305 179 pbaillot
%\]
306 179 pbaillot
%}
307 227 adas
%
308 227 adas
and the $\basic$ axioms are represented by designated initial sequents.
309 227 adas
For instance here are some initial sequents corresponding to some of the $\basic$ axioms:
310 179 pbaillot
\[
311 179 pbaillot
\small
312 179 pbaillot
\begin{array}{l}
313 179 pbaillot
\begin{array}{cccc}
314 179 pbaillot
\vlinf{}{}{\seqar \safe (0)}{}&
315 179 pbaillot
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}&
316 179 pbaillot
\vlinf{}{}{ \safe (t)   \seqar 0 \neq \succ{} t}{} &
317 179 pbaillot
\vlinf{}{}{\safe (s) , \safe (t)  , \succ{} s = \succ{} t\seqar s = t }{}\\
318 179 pbaillot
\end{array}
319 179 pbaillot
\\
320 179 pbaillot
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y  }{}
321 179 pbaillot
\qquad
322 179 pbaillot
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\
323 179 pbaillot
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t)  }{}
324 179 pbaillot
\qquad
325 179 pbaillot
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t)  }{}\\
326 180 pbaillot
\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}
327 179 pbaillot
\end{array}
328 179 pbaillot
\]
329 179 pbaillot
330 227 adas
The sequent system for $\arith^i$ extends $\LK$ by the $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules.
331 227 adas
 Naturally, by completeness, we have that $\arith^i \proves A$ if and only if there is a sequent proof of $\seqar A$.
332 227 adas
 In fact, by \emph{free-cut elimination} results \cite{Takeuti87,Cook:2010:LFP:1734064} we may actually say something much stronger.
333 179 pbaillot
334 227 adas
 Let us say that a sorting $(\vec u ; \vec x)$ of the variables $\vec u , \vec x$ is \emph{compatible} with a formula $A$ if each variable of $\vec x$ occurs hereditarily safe with respect to the $\bc$-typing of terms, i.e.\ never under $\smsh, |\cdot|$ and to the right of $\times$.
335 227 adas
336 225 adas
\begin{theorem}
337 225 adas
	[Typed variable normal form]
338 225 adas
	\label{thm:normal-form}
339 227 adas
	If $\arith^i\proves  A$ then there is a $\arith^i$ sequent proof $\pi$ of $A$ such that each line has the form:
340 227 adas
	\[
341 227 adas
	\normal(\vec u), \safe (\vec x), \Gamma \seqar \Delta
342 227 adas
	\]
343 227 adas
	where $\Gamma \seqar \Delta$ contains only $\Sigma^\safe_i$ formulae for which the sorting $(\vec u ;\vec x)$ is compatible.
344 227 adas
\end{theorem}
345 227 adas
346 227 adas
Strictly speaking, we must alter some of the sequent rules a little to arrive at this normal form. For instance the $\pind$ rule would have $\normal(\vec u)$ in its lower sequent rather than $\normal (t(\vec u))$. The latter is a consequence of the former already in $\basic$.
347 227 adas
The proof of this result also relies on a heavy use of the structural rules, contraction and weakening, to ensure that we always have a complete and compatible typing on the LHS of a sequent. This is similar to what is done in \cite{OstrinWainer05} where they use a $G3$ style calculus to manage such structural manipulations.