Statistiques
| Révision :

root / CSL16 / preliminaries.tex @ 227

Historique | Voir | Annoter | Télécharger (18,12 ko)

1 33 adas
\section{Preliminaries}
2 108 adas
\label{sect:preliminaries}
3 93 adas
%
4 93 adas
%\todo{consider removing and just have a section on linear logic, including free-cut elimination.}
5 33 adas
6 105 adas
7 93 adas
%
8 93 adas
%
9 93 adas
%\paragraph*{Notation}
10 93 adas
%Fix conventions here for use throughout:
11 93 adas
%\begin{itemize}
12 93 adas
%\item Eigenvariables: $a, b , c$.
13 93 adas
%\item (Normal) variables: $u,v,w$. (only when distinction is important, e.g.\ $u^{!\nat}$).
14 93 adas
%\item (Safe) variables: $x,y,z$. (as above, e.g.\ $x^\nat$.)
15 93 adas
%\item Terms: $r,s,t$.
16 93 adas
%\item Formulae: $A,B,C$.
17 93 adas
%\item Atomic formulae: $p,q$.
18 93 adas
%\item Free variables in a term, formula, sequent: $FV(u)$, $FV(A)$, $FV(\Gamma)$
19 93 adas
%\item Sequents: $\Gamma, \Delta, \Sigma, \Pi$.
20 93 adas
%\item lists of formulas $A(\vec{x})$, $!A(\vec{x})$ (in particular for $A=N$).
21 93 adas
%\item Proofs: $\pi, \rho, \sigma$.
22 93 adas
%\item Theories: $\mathcal T$. Sequent systems: $\mathcal S$.
23 93 adas
%\end{itemize}
24 93 adas
%
25 93 adas
%\subsection{Linear logic}
26 33 adas
27 93 adas
%\anupam{use a system that is already in De Morgan form, for simplicity.}
28 93 adas
%\anupam{Have skipped units, can reconsider this when in arithmetic. Also in affine setting can be recovered by any contradiction/tautology.}
29 33 adas
30 120 adas
We formulate linear logic without units with usual notation for the multiplicatives, additives and exponentials from \cite{Girard87}. We restrict negation to the atoms, so that formulae are always in De Morgan normal form,
31 120 adas
%and this is reflected in the sequent system below. We have included
32 120 adas
and we also consider
33 120 adas
rules for arbitrary weakening when working in affine settings.
34 33 adas
35 93 adas
%\anupam{positive and negative.}
36 33 adas
37 33 adas
38 88 adas
39 120 adas
40 120 adas
41 93 adas
\begin{definition}
42 33 adas
%[Sequent calculus for linear logic]
43 110 adas
%[Sequent calculus for affine linear logic]
44 93 adas
\label{def:LLsequentcalculus}
45 120 adas
The sequent calculus for (affine) linear logic is as follows:\footnote{We consider a two-sided system since it is more intuitive for certain nonlogical rules, e.g.\ induction, and also convenient for the witness function method we use in Sect.~\ref{sect:wfm}.}
46 33 adas
\[
47 109 adas
\small
48 33 adas
\begin{array}{l}
49 33 adas
\begin{array}{cccc}
50 33 adas
\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
51 33 adas
& \vlinf{\id}{}{p \seqar p}{}
52 33 adas
& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
53 33 adas
& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
54 33 adas
\\
55 33 adas
\noalign{\bigskip}
56 33 adas
%\text{Multiplicatives:} & & & \\
57 33 adas
%\noalign{\bigskip}
58 33 adas
\vliinf{\lefrul{\lor}}{}{\Gamma,\Sigma, A \lor B \seqar \Delta, \Pi}{\Gamma, A \seqar \Delta}{\Sigma , B \seqar \Pi}
59 33 adas
&
60 33 adas
\vlinf{\lefrul{\land}}{}{\Gamma, A\land B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
61 33 adas
&
62 33 adas
\vlinf{\rigrul{\lor}}{}{\Gamma \seqar \Delta, A \lor B}{\Gamma \seqar \Delta, A, B}
63 33 adas
&
64 33 adas
\vliinf{\rigrul{\land}}{}{\Gamma, \Sigma \seqar \Delta , \Pi , A \land B}{\Gamma \seqar \Delta , A}{\Sigma \seqar \Pi , B}
65 33 adas
\\
66 33 adas
\noalign{\bigskip}
67 33 adas
%\text{Additives:} & & & \\
68 33 adas
%\noalign{\bigskip}
69 33 adas
\vliinf{\lefrul{\laor}}{}{\Gamma, A \laor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
70 33 adas
&
71 33 adas
\vlinf{\lefrul{\laand}}{}{\Gamma, A_1\laand A_2 \seqar \Delta}{\Gamma, A_i \seqar \Delta}
72 33 adas
&
73 33 adas
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
74 33 adas
%\quad
75 33 adas
\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A_1\laor A_2}{\Gamma \seqar \Delta, A_i}
76 33 adas
&
77 33 adas
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
78 33 adas
%\quad
79 33 adas
\vliinf{\rigrul{\laand}}{}{\Gamma \seqar \Delta, A \laand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
80 33 adas
\\
81 33 adas
\noalign{\bigskip}
82 33 adas
%\text{Exponentials:} & & & \\
83 33 adas
%\noalign{\bigskip}
84 33 adas
\vlinf{\lefrul{?}}{}{!\Gamma, ?A \seqar ?\Delta}{!\Gamma , A \seqar ?\Delta}
85 33 adas
&
86 33 adas
\vlinf{\lefrul{!}}{}{\Gamma, !A \seqar \Delta}{\Gamma, A \seqar \Delta}
87 33 adas
&
88 33 adas
\vlinf{\rigrul{?}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, A}
89 33 adas
&
90 33 adas
\vlinf{\rigrul{!}}{}{!\Gamma \seqar ?\Delta, !A}{!\Gamma \seqar ?\Delta, A}
91 33 adas
\\
92 33 adas
\noalign{\bigskip}
93 33 adas
%\text{Structural:} & & & \\
94 33 adas
%\noalign{\bigskip}
95 33 adas
96 33 adas
%\vlinf{\lefrul{\wk}}{}{\Gamma, !A \seqar \Delta}{\Gamma \seqar \Delta}  %% linear logic weakening
97 33 adas
\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
98 33 adas
&
99 33 adas
\vlinf{\lefrul{\cntr}}{}{\Gamma, !A \seqar \Delta}{\Gamma, !A, !A \seqar \Delta}
100 33 adas
&
101 33 adas
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, ?A }{\Gamma \seqar \Delta}   %% linear logic weakening
102 33 adas
103 33 adas
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
104 33 adas
&
105 33 adas
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, ?A}{\Gamma \seqar \Delta, ?A, ?A}
106 33 adas
\\
107 33 adas
\noalign{\bigskip}
108 33 adas
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
109 33 adas
&
110 33 adas
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
111 33 adas
&
112 33 adas
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
113 33 adas
&
114 33 adas
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
115 33 adas
%\noalign{\bigskip}
116 33 adas
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
117 33 adas
\end{array}
118 33 adas
\end{array}
119 33 adas
\]
120 110 adas
where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
121 33 adas
\end{definition}
122 93 adas
%\todo{$\limp$ abbreviation for ...}
123 93 adas
%\todo{bracketing}
124 93 adas
125 110 adas
We do not formally include a symbol for implication but we sometimes write $A \limp B$ as shorthand for $\lnot{A} \lor B$, where $\lnot A$ is the De Morgan dual of $A$. We often omit brackets under associativity, and when writing long implications we assume the right-most bracketing.
126 93 adas
127 97 adas
We will use standard terminology to track formulae in proofs, as presented in e.g.\ \cite{Buss98:intro-proof-theory}.
128 97 adas
In particular, each rule has a distinguished \textit{principal formula}, e.g.\
129 120 adas
  $A \lor B$ in the rule $\lefrul{\lor}$ (and similarly for all rules for the binary connectives) and $?A$ in the rule $\rigrul{\cntr}$, and \emph{active formulae}, e.g.\ $A$ and $B$ in $\lefrul{\lor}$ and so on. These induce the notions of (direct) descendants and ancestors in proofs, as in \cite{Buss98:intro-proof-theory}.
130 97 adas
%The  \textit{direct ancestor} relation on occurrences of formulas in a proof is defined to keep track of identity of formulas from line to line, in the usual way.
131 74 pbaillot
132 97 adas
133 97 adas
  % Observe that we do not consider here any exchange rules, the sequence are made of multisets of formulas and exchanges are implicit. Note that this system is \textit{affine} in the sense that it includes general weakening rules $\rigrul{\wk}$ and  $\lefrul{\wk}$, while in linear logic   $\rigrul{\wk}$ (resp. $\lefrul{\wk}$) is restricted to formulas of the form $?A$ (resp. $!A$).   In the following though, by linear logic we will mean affine linear logic.
134 97 adas
  \subsection{Theories and systems}
135 105 adas
136 110 adas
%  \anupam{need to add a note on semantics}
137 110 adas
%  \anupam{mention equality rules}
138 97 adas
%  \anupam{mention equality axioms and first-order theories and models at some point.}
139 97 adas
140 120 adas
 A \emph{language} is a set of nonlogical symbols (i.e.\ constants, functions, predicates) and a \emph{theory} is a set of closed formulae over some language. We assume that all theories contain the axioms of equality:
141 110 adas
% \[
142 108 adas
% \begin{array}{rl}
143 108 adas
%\refl & \forall x . x = x \\
144 108 adas
%\symm & \forall x, y. (x = y \limp y = x )\\
145 108 adas
%\trans & \forall x , y , z . ( x = y \limp y = z \limp x = z ) \\
146 108 adas
%\subst_f & \forall \vec x , \vec y . (\vec x = \vec y \limp f(\vec x) = f(\vec y) ) \\
147 108 adas
%\subst_P & \forall \vec x , \vec y. (\vec x = \vec y \limp P(\vec x) \limp P(\vec y)  )
148 108 adas
% \end{array}
149 108 adas
%\left\{
150 110 adas
\begin{equation}
151 110 adas
\label{eqn:equality-theory}
152 108 adas
\begin{array}{l}
153 108 adas
\forall x . x = x \quad, \quad \forall x, y. (x = y \limp y = x )\quad, \quad \forall x , y , z . ( x = y \limp y = z \limp x = z ) \\ \forall \vec x , \vec y . (\vec x = \vec y \limp f(\vec x) = f(\vec y) )  \quad , \quad \forall \vec x , \vec y. (\vec x = \vec y \limp P(\vec x) \limp P(\vec y)  )
154 108 adas
\end{array}
155 110 adas
\end{equation}
156 108 adas
%\right\}
157 110 adas
% \]
158 97 adas
  where $\vec x = \vec y$ is shorthand for $x_1 = y_1 \land \vldots \land x_n = y_n$.
159 97 adas
160 97 adas
\newcommand{\init}{\mathit{init}}
161 97 adas
We consider \emph{systems} of `nonlogical' rules extending Dfn.~\ref{def:LLsequentcalculus}, which we write as follows,
162 97 adas
 \[
163 33 adas
 \begin{array}{cc}
164 97 adas
  \vlinf{\init}{}{ \seqar A}{}  &  \vlinf{(R)}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi  }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} }
165 33 adas
\end{array}
166 33 adas
\]
167 97 adas
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
168 33 adas
 \begin{enumerate}
169 97 adas
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
170 110 adas
$ !\Gamma,  ? \Pi$ are called \textit{context formulas}. In $\init$ $A$ is called a principal formula.
171 110 adas
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ !\Gamma,  ? \Pi$.
172 97 adas
    \item A system $\system$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
173 120 adas
   \item  In $(R)$  the sequent $ \Sigma'$ (resp. $\Delta'$) does not contain any formula of the shape $?B$ (resp. $!B$), and  in $\init$ the formula $A$ is not of the form  $!B$.
174 33 adas
 \end{enumerate}
175 97 adas
176 97 adas
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
177 121 adas
 Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas. Condition 4
178 120 adas
% and the conventions of 1
179 121 adas
 is peculiar to our linear logic setting in order to carry out certain proof-theoretic manipulations for the free-cut elimination argument in Sect.~\ref{sect:free-cut-elim}.
180 97 adas
%
181 97 adas
182 97 adas
183 97 adas
 Observe that $\init$ rules can actually be seen as particular cases of $(R)$ rules, with no premise, so in the following we will only consider $(R)$ rules.
184 97 adas
185 33 adas
186 63 pbaillot
%  \patrick{Anupam: note that I had to strengthen the conditions for the rules (R). Condition (1) is needed
187 63 pbaillot
%  to be able to commute a cut with (R), in the case where this cut is with a principal formula of a   ($\rigrul{!}$) rule.
188 33 adas
%
189 63 pbaillot
%  Condition (2) is a sufficient condition to avoid the following situation: cut between a principal formula in say $\Delta'$ in the conclusion of an (R) rule (left premise), and a context formula in $!\Gamma$ in the conclusion of another (R) rule (right premise). Indeed this is not an anchored cut in our sense, but we cannot eliminate it in general (because we cannot commute the cut with (R) up the right premise).
190 63 pbaillot
%  }
191 33 adas
192 97 adas
193 63 pbaillot
194 97 adas
195 110 adas
    To each theory $\theory$ we formally associate the system of $\init$ rules $\seqar A$ for each $A \in \theory$.\footnote{Notice that this naively satisfies condition 3 since theories consist of only closed formulae.}  A proof in such a system will be called a \textit{ $\mathcal T$-proof}, or just {proof} when there is no risk of confusion.
196 110 adas
197 110 adas
198 110 adas
199 110 adas
200 97 adas
%
201 97 adas
%
202 97 adas
%  In what follows we will be interested in an example of theory  $\mathcal T$ which is a form of arithmetic.
203 33 adas
204 110 adas
%   Let us give an example of a possible nonlogical rule that appears later in Sect.~\ref{sect:arithmetic}:
205 110 adas
%
206 110 adas
%   \[
207 110 adas
%	\vliinf{\ind}{}{ !\word(t), !\Gamma , A(\epsilon) \seqar A(t) , ?\Delta }{!\Gamma , !\word(a), A(a) \seqar A(s_0 a ), ?\Delta }{ !\Gamma , !\word(a), A(a) \seqar A(s_1 a ), ?\Delta }
208 110 adas
%\]
209 110 adas
%
210 110 adas
%So here we have $I=\{0,1\}$ (two premises), $\Sigma_i=!\word(a), A(a)$ and $\Delta_i= A(s_i a )$ for $i=0,1$, $\Sigma'= !\word(t), A(\epsilon)$, $\Delta'= A(t)$. So condition 2 is satisfied provided $a\notin FV(!\Gamma, ?\Delta)$ and $a \notin FV(t)$.
211 33 adas
212 110 adas
213 33 adas
%\[
214 33 adas
%	\vliinf{}{(x \notin \FV(\Gamma, \Delta))}{ !\Gamma , A(\epsilon) \seqar A(t) , ?\Delta }{ !\Gamma , A(x) \seqar A(s_0 x ), ?\Delta }{ !\Gamma, A(x) \seqar A( s_1 x ) , ?\Delta}
215 33 adas
%	\]
216 33 adas
217 33 adas
218 108 adas
%  A proof in such a system will be called a \textit{ $\mathcal T$-proof}, or just \textit{proof} when there is no risk of confusion.
219 62 pbaillot
%   The rules of Def. \ref{def:LLsequentcalculus} are called \textit{logical rules} while the rules (ax) and (R) of $\mathcal T$  are called \textit{non-logical}.
220 62 pbaillot
%
221 62 pbaillot
%  As usual rules come with a notion of \textit{principal formulas}, which are a subset of the rules in the conclusion, e.g.:
222 62 pbaillot
%  $A \lor B$ in rule $\lefrul{\lor}$ (and similarly for all rules for connectives); $?A$ in rule $\rigrul{\cntr}$; all conclusion formulas in axiom rules;
223 62 pbaillot
%   $\Sigma', \Delta'$ in rule (R).
224 33 adas
225 33 adas
226 97 adas
% \anupam{15/04: add definitions of theories and systems, unions, rules vs axioms etc. and abuses of notation:
227 97 adas
% 	sometimes use same symbol for theory and system if fixed in advance;
228 97 adas
% 	sometimes coincide axiom with initial rule;
229 97 adas
% 	}
230 110 adas
231 110 adas
232 110 adas
\begin{remark}
233 110 adas
	[Semantics]
234 110 adas
	The models we consider are usual Henkin models, with linear connectives interpreted by their classical counterparts. Consequently, we do not have any completeness theorem for our theories, but we do have soundness.
235 110 adas
\end{remark}
236 110 adas
237 60 adas
238 93 adas
\subsection{Some basic proof-theoretic results}
239 110 adas
We briefly survey some well-known results for theories of linear logic.
240 33 adas
241 97 adas
A rule is \emph{invertible} if each of its upper sequents is derivable from its lower sequent.
242 97 adas
\begin{proposition}
243 97 adas
[Invertible rules, folklore]
244 97 adas
\label{prop:invertible-rules}
245 120 adas
The rules $\lefrul{\land}, \rigrul{\lor}, \lefrul{\laor}, \rigrul{\laand}, \lefrul{\exists}, \rigrul{\forall}$ are invertible.
246 97 adas
\end{proposition}
247 97 adas
We will typically write $\inv{c}$ to denote the inverse derivation for a logical symbol $c$.
248 88 adas
249 97 adas
%[cite Avron:`semantics and proof theory of linear logic']
250 97 adas
%
251 97 adas
%We will make much use of the deduction theorem, allowing us to argue informally within a theory for hypotheses that have been promoted.
252 97 adas
%
253 97 adas
%%$$
254 97 adas
%%	\vliiinf{}{}{ \seqar A}{ \seqar C}
255 97 adas
%%	$$
256 97 adas
%
257 97 adas
%%\[
258 97 adas
%%	\vliiinf{R}{}{ !\Gamma , \Sigma' \seqar \Delta' , ? \Pi  }{ \{!\Gamma , \Sigma_i \seqar \Delta_i , ? \Pi \}_{i \in I} }
259 97 adas
%%	\]
260 33 adas
261 97 adas
We also rely on the following result, which is also folklore but appeared before in \cite{Avron88}.
262 33 adas
263 33 adas
\begin{theorem}
264 97 adas
	[Deduction, folklore]
265 60 adas
	\label{thm:deduction}
266 110 adas
	For any theory $\theory$ and closed formula $A $, $\mathcal T \cup\{A\}$ proves $B$ if and only if $\mathcal{T}$ proves $!A \limp B$.
267 33 adas
\end{theorem}
268 33 adas
269 110 adas
%The occurrence of $!$ in the deduction theorem above is crucial; this restriction is one of the reasons it can be difficult to reason informally in theories over linear logic.
270 33 adas
271 98 adas
272 120 adas
Due to these results notice that, in place of the equality axioms, we can work in a quantifier-free system of rules:
273 110 adas
\begin{proposition}
274 110 adas
	[Equality rules]
275 110 adas
	\eqref{eqn:equality-theory} is equivalent to the following system of rules,
276 110 adas
	\[
277 110 adas
	\vlinf{}{}{\seqar t = t}{}
278 110 adas
	\qquad
279 110 adas
	\vlinf{}{}{s = t \seqar t = s}{}
280 110 adas
	\qquad
281 110 adas
	\vlinf{}{}{r = s, s= t \seqar r = t}{}
282 110 adas
	\qquad
283 110 adas
	\vlinf{}{}{\vec s = \vec t \seqar f(\vec s) = f(\vec t)}{}
284 110 adas
	\qquad
285 110 adas
	\vlinf{}{}{\vec s = \vec t, P(\vec s) \seqar P(\vec t)}{}
286 110 adas
	\]
287 110 adas
	where $r,s,t $ range over terms.
288 110 adas
\end{proposition}
289 98 adas
290 110 adas
291 110 adas
292 110 adas
293 110 adas
294 54 adas
%\subsection{Converting axioms to rules in $\MELLW$}
295 54 adas
%
296 54 adas
%\begin{proposition}
297 54 adas
%	An axiom $\Ax$ of the form,
298 54 adas
%	\[
299 54 adas
%	A_1 \limp \vldots \limp A_m \limp !B_1 \limp \vldots \limp !B_n \limp C
300 54 adas
%	\]
301 54 adas
%	is equivalent (over propositional $\LL$) to the rule $\Rl$:
302 54 adas
%	\[
303 54 adas
%	\vliiinf{\Rl}{}{ !\Gamma , A_1 , \dots , A_m \seqar C , ? \Delta  }{ !\Gamma \seqar B_1 , ?\Delta }{\vldots }{ !\Gamma \seqar B_n , ?\Delta}
304 54 adas
%	\]
305 54 adas
%\end{proposition}
306 54 adas
%\begin{proof}
307 54 adas
%	Let us first assume $\Ax$ and derive $\Rl$. From the axiom and Currying, we have a proof of:
308 54 adas
%	\begin{equation}\label{eqn:curried-axiom}
309 54 adas
%	A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C
310 54 adas
%	\end{equation}
311 54 adas
%
312 54 adas
%	This can simply be cut against each of the premisses of $\Rl$, applying appropriate contractions and necessitations, to derive it:
313 54 adas
%	\[
314 54 adas
%	\vlderivation{
315 54 adas
%		\vliq{c}{}{!\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta }{
316 54 adas
%			\vliin{\cut}{}{!\Gamma, \dots , !\Gamma , A_1 , \dots , A_m \seqar C , ?\Delta, \dots , ?\Delta }{
317 54 adas
%				\vlin{!}{}{!\Gamma \seqar !B_n, ?\Delta }{\vlhy{!\Gamma \seqar B_n , ?\Delta }}
318 54 adas
%			}{
319 54 adas
%			\vliin{\cut}{}{\qquad \qquad \qquad \qquad  \vlvdots \qquad \qquad \qquad \qquad }{
320 54 adas
%				\vlin{!}{}{!\Gamma \seqar !B_1 , ?\Delta}{\vlhy{!\Gamma \seqar B_1, ?\Delta }}
321 54 adas
%			}{\vlhy{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C } }
322 54 adas
%		}
323 54 adas
%	}
324 54 adas
%}
325 54 adas
%\]
326 54 adas
%
327 54 adas
%Now let us prove $\Ax$ (again in the form of \eqref{eqn:curried-axiom}) by using $\Rl$ as follows:
328 54 adas
%\[
329 54 adas
%\vliiinf{\Rl}{}{ A_1 , \dots , A_m , !B_1 , \dots , !B_n \seqar C }{  \vlderivation{
330 54 adas
%		\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_1 }{
331 54 adas
%			\vlin{!}{}{!B_1 \seqar B_1 }{
332 54 adas
%				\vlin{\id}{}{B_1 \seqar B_1 }{\vlhy{}}
333 54 adas
%			}
334 54 adas
%		}
335 54 adas
%	}  }{\vldots}{
336 54 adas
%	\vlderivation{
337 54 adas
%		\vlin{w}{}{ !B_1 , \dots , !B_n \seqar B_n }{
338 54 adas
%			\vlin{!}{}{!B_n \seqar B_n }{
339 54 adas
%				\vlin{\id}{}{B_n \seqar B_n }{\vlhy{}}
340 54 adas
%			}
341 54 adas
%		}
342 54 adas
%	}
343 54 adas
%}
344 54 adas
%\]
345 54 adas
%\end{proof}
346 54 adas
%
347 54 adas
%
348 54 adas
%\textbf{NB:} The proof does not strictly require side formulae $? \Delta$ on the right of the sequent arrow $\seqar$, it would work without them, e.g.\ for the intuitionistic case. In a one-sided setting there is no difference.
349 54 adas
%
350 54 adas
%
351 54 adas
%
352 54 adas
%\begin{corollary}
353 54 adas
%	The induction axiom of $A^1_2$ is equivalent to the rule:
354 54 adas
%	\[
355 54 adas
%	\vliinf{}{(x \notin \FV(\Gamma, \Delta))}{ !\Gamma , !N(t), A(\epsilon) \seqar A(t) , ?\Delta }{ !\Gamma , !N(x), A(x) \seqar A(s_0 x ), ?\Delta }{ !\Gamma, !N(x),  A(x) \seqar A( s_1 x ) , ?\Delta}
356 54 adas
%	\]
357 54 adas
%\end{corollary}
358 54 adas
%\begin{proof}
359 54 adas
%	By proposition above, generalisation and Currying.
360 54 adas
%\end{proof}
361 54 adas
%
362 54 adas
%\begin{proposition}
363 54 adas
% The following induction rule is derivable from the one of the previous corollary:
364 54 adas
%\[
365 54 adas
%	\vliinf{}{(a, \vec{v}, \vec{x} \notin \FV(\Gamma, \Delta))}{ !\Gamma , !N(\vec{w}), N(\vec{y}), !N(t)  \seqar A(t,\vec{w},\vec{y}) , ?\Delta }{ !\Gamma ,  !N(\vec{v}), N(\vec{x}) \seqar A(\epsilon,\vec{v},\vec{x}), ?\Delta }{ !\Gamma ,  !N(\vec{v}), N(\vec{x}),    A(a,\vec{v},\vec{x}) \seqar  A(s_ia,\vec{v},\vec{x}) , ?\Delta}
366 54 adas
%	\]
367 54 adas
%where the second premise corresponds actually to two premises, one for $i=0$ and one for $i=1$.
368 54 adas
%\end{proposition}
369 53 adas
%\subsection{Prenexing}
370 53 adas
%%In the presence of weakening we have a prenex normal form due to the following:
371 53 adas
%%
372 53 adas
%%\[
373 53 adas
%%\vlderivation{
374 53 adas
%%	\vlin{}{}{\exists x . A \lor B \seqar \exists x . (A(x) \lor B) }{
375 53 adas
%%
376 53 adas
%%		}
377 53 adas
%%	}
378 53 adas
%%\]
379 33 adas
%
380 53 adas
%Cannot derive prenexing operations, e.g.\ a problem with $\exists x . A \lor B \seqar \exists x . (A(x) \lor B)$. Can safely add prenexing rules? Or not a problem due to Witness predicate?