Révision 226 CSL17/preliminaries.tex
preliminaries.tex (revision 226) | ||
---|---|---|
1 | 1 |
|
2 | 2 |
\section{Preliminaries} |
3 | 3 |
\label{sect:prelims} |
4 |
We introduce the polynomial hierarchy and its basic properties, then Bellantoni's characterisation of it based on safe recursion and minimization \cite{bellantoni1995fph}.
|
|
4 |
We introduce the polynomial hierarchy and its basic properties, then Bellantoni's characterisation of it based on safe recursion and minimisation \cite{bellantoni1995fph}.
|
|
5 | 5 |
|
6 | 6 |
%\anupam{Should recall polymax bounded functions and the polychecking lemma, e.g.\ from Bellantoni's FPH paper or thesis. Quite important, even if proof not given.} |
7 | 7 |
|
... | ... | |
151 | 151 |
\begin{itemize} |
152 | 152 |
\item The boolean predicates $\notfn (;x)$, $\andfn(;x,y)$, $\orfn(;x,y)$, $\equivfn(;x,y)$ can all be defined on safe arguments, simply by computing by case distinction using the conditional function. |
153 | 153 |
%\item $\bit(l;x)$ returns the $\mode l$th bit of $x$. |
154 |
\item We can define the function $\bit(l;x)$ which returns the $|l|$th least significant bit of $x$. For instance $\bit(11;1010)=0$.
|
|
154 |
\item We can define the function $\bit(l;x)$ which returns the $|l|$th least significant bit of $x$. For instance $\bit(11;1011)=0$.
|
|
155 | 155 |
|
156 | 156 |
For that let us first define the function $\shorten(l;x)$ which returns the $|x|- |l|$ prefix of $x$, as follows: |
157 | 157 |
\begin{eqnarray*} |
158 | 158 |
\shorten(\epsilon;x) &=&x\\ |
159 |
\shorten(li;x) &=&p(;\shorten(l;x))
|
|
159 |
\shorten(\succ{i}l;x) &=&p(;\shorten(l;x))
|
|
160 | 160 |
\end{eqnarray*} |
161 | 161 |
Then we define $\bit(l;x)$ as follows: |
162 | 162 |
$$\bit(l;x)=C(;\shorten(pl;x),\epsilon,0,1).$$ |
... | ... | |
166 | 166 |
|
167 | 167 |
%\nb{Remember polymax bounded checking lemma! Quite important. Also need to bear this in mind when adding functions.} |
168 | 168 |
|
169 |
\subsection{Bellantoni's characterisation of $\fphi{i}$ using predicative minimization}
|
|
169 |
\subsection{Bellantoni's characterisation of $\fphi{i}$ using predicative minimisation}
|
|
170 | 170 |
|
171 |
Now, in order to characterize $\fph$ and its subclasses $\fphi{i}$ we consider Bellantoni's function algebra $\mubc$, extending $\bc$ by predicative minimization:
|
|
171 |
Now, in order to characterize $\fph$ and its subclasses $\fphi{i}$ we consider Bellantoni's function algebra $\mubc$, extending $\bc$ by predicative minimisation:
|
|
172 | 172 |
\begin{definition}[$\mubc$ and $\mubc^i$ programs] |
173 | 173 |
The algebra $\mubc$ is generated from $\bc$ by the following additional operation: |
174 | 174 |
|
175 | 175 |
\begin{enumerate} |
176 | 176 |
\setcounter{enumi}{7} |
177 |
\item Predicative minimization. If $h$ is in $\mubc$, then so is $f$ defined by
|
|
177 |
\item Predicative minimisation. If $h$ is in $\mubc$, then so is $f$ defined by
|
|
178 | 178 |
$$f(\vec u; \vec x):= \begin{cases} |
179 | 179 |
s_1 \mu y.(h(\vec u; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\ |
180 | 180 |
0 & \mbox{ otherwise,} |
... | ... | |
184 | 184 |
where $\mu y.(h(\vec u; \vec x , y)\mod 2 = 0)$ is the least $y$ such that the equality holds. |
185 | 185 |
%We will denote this function $f$ as $\mu y^{+1} . h(\vec u ; \vec x , y) =_2 0$. |
186 | 186 |
|
187 |
For each $i\geq 0$, $\mubc^i$ is the set of $\mubc$ functions obtained by at most $i$ applications of predicative minimization.\footnote{This is the number of nestings of $\mu$ in a $\mubc$ program.} So $\mubc^0=BC$ and $\mubc =\cup_i \mubc^i$.
|
|
187 |
For each $i\geq 0$, $\mubc^i$ is the set of $\mubc$ functions obtained by at most $i$ applications of predicative minimisation.\footnote{This is the number of nestings of $\mu$ in a $\mubc$ program.} So $\mubc^0=BC$ and $\mubc =\cup_i \mubc^i$.
|
|
188 | 188 |
|
189 | 189 |
\end{definition} |
190 | 190 |
|
... | ... | |
217 | 217 |
A polynomial $q$ satisfying this condition is called a \textit{threshold} for $f$. |
218 | 218 |
\end{definition} |
219 | 219 |
One then has: |
220 |
\begin{lemma}[Bounded Minimization, \cite{BellantoniThesis}]
|
|
220 |
\begin{lemma}[Bounded minimisation, \cite{BellantoniThesis}]
|
|
221 | 221 |
\label{lem:bounded-minimisation} |
222 | 222 |
If $f(\vec u; \vec x,y)$ is a polynomial checking function on $\vec u$ and $q$ is a threshold, then for any $\vec u$ and $\vec x$ we have: |
223 | 223 |
$$ (\exists y. f(\vec u; \vec x,y)\mbox{ mod } 2=0) \Rightarrow (\exists y. (\size{y}\leq q(\size{\vec{x}})+2) \mbox{ and } f(\vec u; \vec x,y) \mbox{ mod } 2=0) .$$ |
... | ... | |
229 | 229 |
\label{lem:polychecking} |
230 | 230 |
Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is a polymax bounded function polynomial checking function on $\vec u$. |
231 | 231 |
\end{lemma} |
232 |
The following property follows from \cite{BellantoniThesis, Bellantoni95}]
|
|
232 |
The following property follows from \cite{BellantoniThesis, Bellantoni95}:
|
|
233 | 233 |
\begin{proposition} |
234 | 234 |
If $\Phi$ is a class of polymax bounded polynomial checking functions, then $\mubc(\Phi)$ satisfies the properties of Thm \ref{thm:mubc}. |
235 | 235 |
\end{proposition} |
Formats disponibles : Unified diff