Révision 226 CSL17/preliminaries.tex

preliminaries.tex (revision 226)
1 1

  
2 2
\section{Preliminaries}
3 3
\label{sect:prelims}
4
We introduce the polynomial hierarchy and its basic properties, then Bellantoni's characterisation of it based on safe recursion and minimization \cite{bellantoni1995fph}.
4
We introduce the polynomial hierarchy and its basic properties, then Bellantoni's characterisation of it based on safe recursion and minimisation \cite{bellantoni1995fph}.
5 5

  
6 6
%\anupam{Should recall polymax bounded functions and the polychecking lemma, e.g.\ from Bellantoni's FPH paper or thesis. Quite important, even if proof not given.}
7 7

  
......
151 151
	\begin{itemize}
152 152
	\item The boolean predicates $\notfn (;x)$,  $\andfn(;x,y)$, $\orfn(;x,y)$, $\equivfn(;x,y)$ can all be defined on safe arguments, simply by computing by case distinction using the conditional function.
153 153
	%\item $\bit(l;x)$ returns the $\mode l$th bit of $x$.
154
	\item We can define the function $\bit(l;x)$ which returns the $|l|$th least significant bit of $x$. For instance $\bit(11;1010)=0$.
154
	\item We can define the function $\bit(l;x)$ which returns the $|l|$th least significant bit of $x$. For instance $\bit(11;1011)=0$.
155 155
	
156 156
	For that let us first define the function $\shorten(l;x)$ which returns the $|x|- |l|$ prefix of $x$, as follows:
157 157
	\begin{eqnarray*}
158 158
	\shorten(\epsilon;x) &=&x\\
159
	\shorten(li;x) &=&p(;\shorten(l;x))
159
	\shorten(\succ{i}l;x) &=&p(;\shorten(l;x))
160 160
	\end{eqnarray*}
161 161
	Then we define $\bit(l;x)$  as follows:
162 162
	$$\bit(l;x)=C(;\shorten(pl;x),\epsilon,0,1).$$ 
......
166 166

  
167 167
%\nb{Remember polymax bounded checking lemma! Quite important. Also need to bear this in mind when adding functions.}
168 168

  
169
\subsection{Bellantoni's characterisation of $\fphi{i}$ using predicative minimization}
169
\subsection{Bellantoni's characterisation of $\fphi{i}$ using predicative minimisation}
170 170

  
171
Now, in order to characterize $\fph$ and its subclasses $\fphi{i}$ we consider Bellantoni's function algebra $\mubc$, extending $\bc$ by predicative minimization: 
171
Now, in order to characterize $\fph$ and its subclasses $\fphi{i}$ we consider Bellantoni's function algebra $\mubc$, extending $\bc$ by predicative minimisation: 
172 172
\begin{definition}[$\mubc$ and $\mubc^i$ programs]
173 173
The algebra $\mubc$ is generated from $\bc$ by the following additional operation:
174 174

  
175 175
\begin{enumerate}
176 176
			\setcounter{enumi}{7}
177
	\item Predicative minimization. If $h$ is in $\mubc$, then so is $f$ defined by
177
	\item Predicative minimisation. If $h$ is in $\mubc$, then so is $f$ defined by
178 178
	$$f(\vec u; \vec x):= \begin{cases}
179 179
	s_1 \mu y.(h(\vec u; \vec x, y)\mod 2 = 0)& \mbox{ if  there exists such a $y$,} \\
180 180
	0  & \mbox{ otherwise,}
......
184 184
where $\mu y.(h(\vec u; \vec x , y)\mod 2 = 0)$ is the least $y$ such that the equality holds.
185 185
%We will denote this function $f$ as $\mu y^{+1} . h(\vec u ; \vec x , y) =_2 0$.
186 186

  
187
 For each $i\geq 0$, $\mubc^i$ is the set of $\mubc$ functions obtained by at most $i$ applications of predicative minimization.\footnote{This is the number of nestings of $\mu$ in a $\mubc$ program.} So $\mubc^0=BC$ and $\mubc =\cup_i \mubc^i$.
187
 For each $i\geq 0$, $\mubc^i$ is the set of $\mubc$ functions obtained by at most $i$ applications of predicative minimisation.\footnote{This is the number of nestings of $\mu$ in a $\mubc$ program.} So $\mubc^0=BC$ and $\mubc =\cup_i \mubc^i$.
188 188

  
189 189
 \end{definition}
190 190
 
......
217 217
 A polynomial $q$ satisfying this condition is called a \textit{threshold} for $f$.
218 218
 \end{definition}
219 219
 One then has:
220
 \begin{lemma}[Bounded Minimization, \cite{BellantoniThesis}]
220
 \begin{lemma}[Bounded minimisation, \cite{BellantoniThesis}]
221 221
 	\label{lem:bounded-minimisation}
222 222
If  $f(\vec u; \vec x,y)$ is a polynomial checking function on $\vec u$ and $q$ is a threshold, then for any $\vec u$ and $\vec x$ we have:
223 223
$$ (\exists y.   f(\vec u; \vec x,y)\mbox{ mod } 2=0) \Rightarrow (\exists y.  (\size{y}\leq q(\size{\vec{x}})+2) \mbox{ and } f(\vec u; \vec x,y) \mbox{ mod } 2=0) .$$
......
229 229
 	\label{lem:polychecking}
230 230
 Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is  a polymax bounded function  polynomial checking function on $\vec u$.
231 231
 \end{lemma}
232
 The following property follows from \cite{BellantoniThesis, Bellantoni95}]
232
 The following property follows from \cite{BellantoniThesis, Bellantoni95}:
233 233
 \begin{proposition}
234 234
  If $\Phi$ is a class of polymax bounded polynomial checking functions, then  $\mubc(\Phi)$ satisfies the properties of Thm \ref{thm:mubc}.
235 235
 \end{proposition}

Formats disponibles : Unified diff