Statistiques
| Révision :

root / CSL17 / completeness.tex @ 226

Historique | Voir | Annoter | Télécharger (2,68 ko)

1 206 pbaillot
\section{Completeness}\label{sect:completeness}
2 166 adas
3 166 adas
The main result of this section is the following:
4 166 adas
5 166 adas
\begin{theorem}
6 166 adas
	\label{thm:completeness}
7 199 pbaillot
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$.
8 168 adas
\end{theorem}
9 224 pbaillot
\begin{proof}[Sketch](A more detailed proof can be found in Appendix \ref{appendix:completeness})
10 168 adas
11 224 pbaillot
 The proof proceeds by induction on the construction of $\mubci{i-1}$ program $f(\vec u ; \vec x)$ to construct a suitable formula $A_f(\vec u, \vec x)$ .  The case of initial functions is easy, by using the formulas we gave in Sect. \ref{sect:graphsbasicfunctions}. The case of safe composition is also simple, and makes use of the $\rais$ rule. The two key cases are thus those of predicative recursion and predicative minimisation.
12 224 pbaillot
13 224 pbaillot
 For predicative recursion, the basic idea is to follow the classical simulation of primitive recursion in arithmetic, adapted to recursion on notation, by encoding the sequence of recursive calls as an integer $w$. The main technical difficulty is to have a decoding predicate $\beta (k, w, y)$ (the $k$th element of the sequence represented by $w$ is $y$) which is sorted in a suitable way so that the formula $A_f$  is in the same class $\Sigma^{\safe}_i$ as $A_g$,  $A_{h_0}$ and $A_{h_1}$.  This can be obtained by defining  the predicate $\beta (k, w, y)$ with $k$ in $\normal$ and $w$, $y$ in $\safe$.
14 168 adas
15 224 pbaillot
16 224 pbaillot
 For predicative minimisation finally, assume $f$ is defined by  $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$. By induction hypothesis we have a $\Sigma^{\safe}_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$  satisfying the property. We then define $A_f(\vec u ; \vec x , z)$ as the following $\Sigma^{\safe}_{i}$ formula:
17 224 pbaillot
\[
18 224 pbaillot
\begin{array}{rl}
19 224 pbaillot
&\left(
20 224 pbaillot
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)
21 224 pbaillot
\right) \\
22 224 pbaillot
\cor & \left(
23 224 pbaillot
\begin{array}{ll}
24 224 pbaillot
z\neq 0
25 224 pbaillot
& \cand\   \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\
26 224 pbaillot
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1)
27 224 pbaillot
\end{array}
28 224 pbaillot
\right)
29 224 pbaillot
\end{array}
30 224 pbaillot
\]
31 224 pbaillot
As in the bounded arithmetic $S_2$ (\cite{Buss86book}, Thm 20, p. 58),  $\arith^i$ can prove a minimisation principle for $\cmin{\Sigma^\safe_{i-1}}$ formulas, which we apply to the formula  $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$. From that we can prove the totality of $A_f(\vec u ; \vec x , z)$ as required.
32 168 adas
33 224 pbaillot
\end{proof}
34 168 adas
35 168 adas
36 198 pbaillot
37 168 adas
38 168 adas
39 168 adas
40 171 adas
41 217 pbaillot
42 168 adas
43 168 adas
44 195 pbaillot
45 195 pbaillot
46 168 adas
47 197 pbaillot
48 168 adas
49 168 adas
50 168 adas
51 168 adas
52 168 adas
53 168 adas