Révision 225 CSL17/appendix-soundness.tex
appendix-soundness.tex (revision 225) | ||
---|---|---|
1 | 1 |
\section{Proof of soundness} |
2 |
|
|
3 |
\begin{definition} |
|
4 |
[Length bounded characteristic functions] |
|
5 |
We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A$ and a compatible typing $(\vec u ; \vec x)$ of its varables, as follows. |
|
6 |
% If $A$ is a $\Pi_{i}$ formula then: |
|
7 |
\[ |
|
8 |
\begin{array}{rcl} |
|
9 |
\charfn{\vec u ; \vec x}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\ |
|
10 |
\smallskip |
|
11 |
% \charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\ |
|
12 |
% \smallskip |
|
13 |
\charfn{\vec u ; \vec x}{\neg A} (l, \vec u ; \vec x) & \dfn & \notfn (;\charfn{\vec u ; \vec x}{A}(l , \vec u ; \vec x)) \\ |
|
14 |
\smallskip |
|
15 |
\charfn{\vec u ; \vec x}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \orfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) \\ |
|
16 |
\smallskip |
|
17 |
\charfn{\vec u ; \vec x}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \andfn(; \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w), \charfn{\vec u ; \vec x}{B} (\vec u ;\vec x) ) |
|
18 |
% \end{array} |
|
19 |
% \quad |
|
20 |
% \begin{array}{rcl} |
|
21 |
\\ \smallskip |
|
22 |
\charfn{\vec u ; \vec x}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases} |
|
23 |
1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\ |
|
24 |
0 & \text{otherwise} |
|
25 |
\end{cases} \\ |
|
26 |
\smallskip |
|
27 |
\charfn{\vec u ; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & |
|
28 |
\begin{cases} |
|
29 |
0 & \exists x^\sigma. \charfn{\vec u ; \vec x}{ A(x)} (l, \vec u; \vec x , x) = 0 \\ |
|
30 |
1 & \text{otherwise} |
|
31 |
\end{cases} |
|
32 |
\end{array} |
|
33 |
\] |
|
34 |
\end{definition} |
|
35 |
|
|
2 | 36 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
3 | 37 |
|
4 | 38 |
\begin{proof} |
Formats disponibles : Unified diff