Statistiques
| Révision :

root / CSL16 / appendix-bc-convergence.tex @ 225

Historique | Voir | Annoter | Télécharger (5,18 ko)

1 113 adas
\section{Further proof details for Thm.~\ref{thm:arith-proves-bc-conv}, Sect.~\ref{sect:bc-convergence}}
2 105 adas
\label{sect:app-bc-conv}
3 113 adas
4 113 adas
For derivation \eqref{eqn:prn-cvg-base} $\alpha$ is,
5 105 adas
	\[
6 105 adas
	\vlderivation{
7 105 adas
	%	\vliin{\cut}{}{ \word (\vec x) \seqar \word ( g (\vec v ; \vec x)) }{
8 105 adas
	%		\vlin{\rigrul{!}}{}{\seqar !\word (v)}{
9 105 adas
	%			\vlin{assump}{}{\seqar \word (\vec v)}{\vlhy{}}
10 105 adas
	%			}
11 105 adas
	%		}{
12 105 adas
			\vliin{\cut}{}{ !\word (\vec v ) , \word (\vec x) \seqar \word (g (\vec v ; \vec x )) }{
13 105 adas
				\vlhy{\seqar \forall \vec v^{!\word} . \forall \vec x^\word . \word (g (\vec v ; \vec x)) }
14 105 adas
				}{
15 105 adas
				\vliq{\lefrul{\forall}}{  }{ !\word (\vec v) , \word (\vec x) , \forall \vec v^{!\word} . \forall \vec x^\word \word (g(\vec v ; \vec x )) \seqar \word (g(\vec v ; \vec x )) }{
16 105 adas
					\vlin{\id}{}{\word (g(\vec v ; \vec x )) \seqar \word (g(\vec v ; \vec x ))}{\vlhy{}}
17 105 adas
					}
18 105 adas
				}
19 105 adas
	%		}
20 105 adas
		}
21 105 adas
	\]
22 105 adas
	and $\beta$ is:
23 105 adas
	\[
24 113 adas
	\hspace{-1em}
25 113 adas
	\small
26 105 adas
	\vlderivation{
27 105 adas
		\vliin{\cut}{}{!\word (\vec v) , \word (\vec x) \seqar \word ( f ( \epsilon , \vec v ; \vec x ) ) }{
28 105 adas
			\vlhy{!\word (\vec v) , \word (\vec x) \seqar \word (g (\vec v ; \vec x) ) }
29 105 adas
			}{
30 105 adas
			\vliin{\cut}{}{ \word (g (\vec v ; \vec x) ) \seqar \word (f (\epsilon, \vec v ; \vec x) ) }{
31 105 adas
				\vlin{\closure{\eqspec}}{}{ \seqar f(\epsilon , \vec v ; \vec x) = g(\vec v ; \vec x) }{\vlhy{}}
32 105 adas
				}{
33 105 adas
				\vlin{=}{}{\word ( g(\vec v ; \vec x) ) , f(\epsilon , \vec v ; \vec x) = g(\vec v ; \vec x)  \seqar \word (f (\epsilon, \vec v ; \vec x) ) }{\vlhy{}}
34 105 adas
				}
35 105 adas
			}
36 105 adas
		}
37 105 adas
	\]
38 105 adas
39 105 adas
	Suppose $f$ is defined by safe composition as follows:
40 105 adas
	\[
41 105 adas
	f( \vec u ; \vec x )
42 105 adas
	\quad = \quad
43 105 adas
	h( \vec g (\vec u ; )  ; \vec g' ( \vec u ; \vec x ) )
44 105 adas
	\]
45 105 adas
46 120 adas
	By the inductive hypothesis we already have proofs of the covergence of $h$ and each $g_i$ and $g_j'$. Thus we construct the required proof as follows:
47 105 adas
	\[
48 113 adas
	\hspace{-1em}
49 113 adas
	\tiny
50 105 adas
	\vlderivation{
51 105 adas
		\vliq{\rigrul{\forall}}{}{ \seqar \forall\vec u^{!\word} . \forall \vec x^\word . \word( f(\vec u ; \vec x ) ) }{
52 105 adas
			\vliq{\beta}{}{ !\word (\vec u) , \word (\vec x) \seqar \word ( f( \vec u ; \vec x ) ) }{
53 105 adas
				\vliq{\cntr}{}{  !\word (\vec u) , \word (\vec x) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x )  ) )  }{
54 105 adas
					\vliiiq{\cut}{}{!\word (\vec u) , \dots ,  !\word (\vec u) , \word (\vec x) , \dots , \word (\vec x) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x )  ) )   }{
55 105 adas
						\vlhy{
56 105 adas
							\left\{
57 105 adas
							\vlderivation{
58 105 adas
								\vlin{\rigrul{!}}{}{ !\word (\vec u) \seqar !\word ( g_i (\vec u ;) ) }{
59 105 adas
									\vliq{\alpha}{}{ !\word (\vec u) \seqar \word ( g_i (\vec u ;) }{
60 105 adas
										\vltr{\IH}{ \forall \vec u^{!\word} . \word (g_i (\vec u ;) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
61 105 adas
										}
62 105 adas
									}
63 105 adas
								}
64 105 adas
							\right\}_{i \leq |\vec g| }
65 105 adas
							}
66 105 adas
						}{
67 105 adas
						\vlhy{
68 105 adas
							\left\{
69 105 adas
							\vlderivation{
70 105 adas
								\vliq{\alpha}{}{ !\word ( \vec u )  , \word (\vec x) \seqar \word  ( g_j' ( \vec u ; \vec x ) ) }{
71 105 adas
									\vltr{\IH}{ \seqar \forall \vec u^{!\word}. \forall \vec x^\word . \word ( g_j' (\vec u ; \vec x) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
72 105 adas
									}
73 105 adas
								}
74 105 adas
							\right\}_{j \leq |\vec g'|}
75 105 adas
							}
76 105 adas
						}{
77 105 adas
						\vliq{\alpha}{}{ !\word ( \vec g (\vec u ;) ) , \word ( \vec g ' ( \vec u ; \vec x ) ) \seqar \word ( h( \vec g(\vec u ;) ; \vec g' ( \vec u ; \vec x )  )  ) ) }{
78 105 adas
							\vltr{\IH}{ \seqar \forall \vec v^{!\word} . \forall \vec y^\word . \word ( h( \vec v ; \vec y ) ) }{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}
79 105 adas
							}
80 105 adas
						}
81 105 adas
					}
82 105 adas
				}
83 105 adas
			}
84 105 adas
		}
85 105 adas
	\]
86 105 adas
	where $\alpha$ and $\beta$ are similar to before.
87 109 adas
88 109 adas
89 109 adas
	We also give the case of the conditional initial function $C (; x, y_\epsilon , y_0, y_1)$, to exemplify the use of additives.
90 109 adas
	%The conditional is defined equationally as:
91 109 adas
	%\[
92 109 adas
	%\begin{array}{rcl}
93 109 adas
	%C (; \epsilon, y_\epsilon , y_0, y_1  ) & = & y_\epsilon \\
94 109 adas
	%C(; \succ_0 x , y_\epsilon , y_0, y_1) & = & y_0 \\
95 109 adas
	%C(; \succ_1 x , y_\epsilon , y_0, y_1) & = & y_1
96 109 adas
	%\end{array}
97 109 adas
	%\]
98 109 adas
	Let $\vec y = ( y_\epsilon , y_0, y_1 )$ and construct the required proof as follows:
99 109 adas
	\[
100 109 adas
	\small
101 109 adas
	\vlderivation{
102 109 adas
		\vliq{}{}{ \word (x) , \word (\vec y) \seqar \word ( C(; x ,\vec y) )}{
103 113 adas
			\vlin{2\cdot \laor}{}{ x = \epsilon \laor \exists z^\word . x = \succ_0 z \laor \exists z^\word x = \succ_1 z , \word (\vec y) \seqar \word ( C(;x \vec y) ) }{ \vlhy{
104 113 adas
				\vlderivation{
105 109 adas
				\vliq{}{}{ x = \epsilon , \word (\vec y) \seqar \word ( C(; x , \vec y) ) }{
106 113 adas
									\vliq{}{}{ \word (\vec y) \seqar \word ( C( ; \epsilon , \vec y ) ) }{
107 113 adas
										\vlin{\wk}{}{ \word (\vec y) \seqar \word (y_\epsilon) }{
108 113 adas
											\vlin{\id}{}{\word (y_\epsilon) \seqar \word ( y_\epsilon )}{\vlhy{}}
109 113 adas
										}
110 113 adas
									}
111 113 adas
								}
112 109 adas
				}
113 113 adas
\qquad
114 109 adas
				\left\{
115 109 adas
				\vlderivation{
116 109 adas
					\vlin{\lefrul{\exists}}{}{ \exists z^\word . x = \succ_i z , \word (\vec y) \seqar \word ( C(;x , \vec y) ) }{
117 109 adas
						\vliq{}{}{ x = \succ_i a , \word (\vec y ) \seqar \word (C(; x ,\vec y)) }{
118 109 adas
							\vliq{}{}{ \word (\vec y) \seqar \word ( C(; \succ_i a , \vec y ) ) }{
119 109 adas
								\vlin{\wk}{}{ \word (\vec y) \seqar \word (y_i) }{
120 109 adas
									\vlin{\id}{}{\word (y_i) \seqar \word (y_i)}{\vlhy{}}
121 109 adas
								}
122 109 adas
							}
123 109 adas
						}
124 109 adas
					}
125 109 adas
				}
126 109 adas
				\right\}_{i = 0,1}
127 109 adas
			}
128 109 adas
		}
129 109 adas
	}
130 109 adas
}
131 109 adas
\]
132 109 adas
whence the result follows by $\forall$-introduction.
133 109 adas
%The other initial functions are routine.