Statistiques
| Révision :

root / CSL17 / appendix-soundness.tex @ 224

Historique | Voir | Annoter | Télécharger (6,61 ko)

1
\section{Proof of soundness}
2
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context.
3

    
4
\begin{proof}
5
	Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$.
6
	We define the function $f$ inductively, by considering the various final rules of $\pi$.
7
	
8
	
9
	\paragraph*{Negation}
10
	Can assume only on atomic formulae, so no effect.	
11
	
12
	\paragraph*{Logical rules}
13
	Pairing, depairing. Need length-boundedness.
14
	
15
	If we have a left conjunction step:
16
	\[
17
	\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta}
18
	\]
19
	By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that,
20
	\[
21
	\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w)
22
	\quad \implies \quad
23
	\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) ))
24
	\]
25
	for some polynomial $p$.
26
	%
27
	We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$.
28
	
29
	
30
	Right disjunction step:
31
	\[
32
	\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B }
33
	\]
34
	$\vec f^\pi_\Delta$ remains the same as that of premiss.
35
	Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that:
36
	\[
37
	\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w)
38
	\quad \implies \quad
39
	\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) ))		
40
	\]
41
	for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH).
42
	We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$.
43
	\paragraph*{Quantifiers}
44
	\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.}
45
	
46
	
47
	
48
	Sharply bounded quantifiers are generalised versions of logical rules.
49
	\[
50
	\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar  \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar  \Delta, A(u)  }
51
	\]
52
	By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that:
53
	\[
54
	\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w )
55
	\quad \implies \quad
56
	\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) )
57
	\]
58
	with $|f|\leq q(|l|)$.
59
	
60
	By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that....
61
	
62
	We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w  )$.
63
	
64
	
65
	Right existential:
66
	\[
67
	\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)}
68
	\]
69
	Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form.
70
	
71
	
72
	\paragraph*{Contraction}
73
	Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula.
74
	
75
	\[
76
	\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A}
77
	\]
78
	
79
	$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss.
80
	We define:
81
	\[
82
	f^\pi_A ( \vec u ; \vec x , \vec w  )
83
	\quad \dfn \quad
84
	\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w)  )
85
	\]
86
	
87
	
88
	\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. }
89
	\paragraph*{Induction}
90
	Corresponds to safe recursion on notation.
91
	Suppose final step is (wlog):
92
	\[
93
	\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma,  A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
94
	\]
95
	\anupam{need to say in normal form part that can assume induction of this form}
96
	For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
97
	
98
	Now, by the inductive hypothesis, we have functions $h_i$ such that:
99
	\[
100
	\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x ,  \vec w)
101
	\quad \implies \quad
102
	\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x ,  h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) )
103
	\]
104
	First let us define $ f$ as follows:
105
	\[
106
	\begin{array}{rcl}
107
	f (0 , \vec u ; \vec x, \vec w,  w ) & \dfn &  w\\
108
	f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & 
109
	h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w ))
110
	\end{array}
111
	\]
112
	where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$.
113
	\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.}
114
	
115
	Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$.
116
	
117
	\paragraph*{Cut}
118
	If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position.
119
	Otherwise it is a `raisecut':
120
	\[
121
	\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe  . A(x) }{ \normal (u)  , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta }
122
	\]
123
	In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as:
124
	\[
125
	\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w )
126
	\quad \dfn \quad
127
	\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w )
128
	\]
129
	\end{proof}
130