Statistiques
| Révision :

root / CSL17 / appendix-completeness.tex @ 224

Historique | Voir | Annoter | Télécharger (9,08 ko)

1 224 pbaillot
\section{Proof of completeness}\label{appendix:completeness}
2 223 adas
3 223 adas
The rest of this section is devoted to a proof of this theorem.
4 223 adas
We proceed by structural induction on a $\mubc^{i-1} $ program, dealing with each case in the proceeding paragraphs.
5 223 adas
6 223 adas
The property is easily verified for the class of initial functions of  $\mubci{i-1}$: constant, projections, (binary) successors, predecessor, conditional, as already shown in Sect. \ref{sect:graphsbasicfunctions}. Now let us examine the three constructions: predicative minimisation, predicative (safe) recursion and composition.
7 223 adas
\paragraph*{Predicative minimisation}
8 223 adas
Suppose $f(\vec u ; \vec x)$ is defined as $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$.
9 223 adas
By definition $g$ is in $\mubci{i-2}$, and so by the inductive hypothesis there is a $\Sigma^{\safe}_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$ computing the graph of $g$ such that,
10 223 adas
\[
11 223 adas
\arith^i \proves \forall \vec u^\normal . \forall \vec x^\safe , x^\safe . \exists ! y^\safe . A_g(\vec u , \vec x , x , y)
12 223 adas
\]
13 223 adas
Let us define $A_f(\vec u ; \vec x , z)$ as:
14 223 adas
\[
15 223 adas
\begin{array}{rl}
16 223 adas
&\left(
17 223 adas
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)
18 223 adas
\right) \\
19 223 adas
\cor & \left(
20 223 adas
\begin{array}{ll}
21 223 adas
z\neq 0
22 223 adas
& \cand\   \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\
23 223 adas
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1)
24 223 adas
\end{array}
25 223 adas
\right)
26 223 adas
\end{array}
27 223 adas
\]
28 223 adas
Notice that $A_f$ is $\Pi^{\safe}_{i-1}$, since $A_g$ is $\Sigma^{\safe}_{i-1}$ and occurs only in negative context above, with additional safe universal quantifiers occurring in positive context.
29 223 adas
In particular this means $A_f$ is $\Sigma^{\safe}_i$.
30 223 adas
31 223 adas
Now, to prove totality of $A_f$, we rely on $\Sigma^\safe_{i-1}$-minimisation, which is a consequence of $\cpind{\Sigma^\safe_i}$:
32 223 adas
33 223 adas
\begin{lemma}
34 223 adas
	[Minimisation]
35 223 adas
	$\arith^i \proves \cmin{\Sigma^\safe_{i-1}}$.
36 223 adas
	\end{lemma}
37 223 adas
	% see Thm 20 p. 58 in Buss' book.
38 223 adas
	%\begin{proof}
39 223 adas
	%\end{proof}
40 223 adas
	This Lemma is proved by using the same method as for the proof of the analogous result in the bounded arithmetic $S_2^{i+1}$ (see \cite{Buss86book}, Thm 20, p. 58).
41 223 adas
42 223 adas
	\patrick{Examining it superficially, I think indeed the proof of Buss can be adapted to our setting. But we should probably look again at that with more scrutiny.}
43 223 adas
44 223 adas
	Now, working in $\arith^i$, let $\vec u \in \normal , \vec x \in \safe$ and let us prove:
45 223 adas
	\[
46 223 adas
	\exists !z^\safe  . A_f(\vec u ; \vec x , z)
47 223 adas
	\]
48 223 adas
	Suppose that $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$.
49 223 adas
	We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$.
50 223 adas
	%\todo{verify $z\neq 0$ disjunct.}
51 223 adas
	Then $z \neq 0$ holds. Moreover we had  $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that
52 223 adas
	$\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that
53 223 adas
	$\exists y^\safe .  (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce
54 223 adas
	$\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction
55 223 adas
	$A_f(\vec u ; \vec x , z)$ is proven.
56 223 adas
57 223 adas
	Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$, so we can set $z=0$ and the first member of the disjunction $A_f(\vec u ; \vec x , z)$ is proven.
58 223 adas
59 223 adas
	So we have proven $\exists z^\safe  . A_f(\vec u ; \vec x , z)$, and unicity can be easily verified.
60 223 adas
61 223 adas
	\paragraph*{Predicative recursion on notation}
62 223 adas
63 223 adas
	\anupam{Assume access to the following predicates (makes completeness easier, soundness will be okay):
64 223 adas
		\begin{itemize}
65 223 adas
			%	\item $\pair x y z $ . ``$z$ is the sequence that appends $y$ to the sequence $x$''
66 223 adas
			\item $\pair x y z$. ``$z$ is the sequence that prepends $x$ to the sequence $y$''
67 223 adas
			\item $\beta (i; x ,y)$. ``The $i$th element of the sequence $x$ is $y$.''
68 223 adas
			\end{itemize}
69 223 adas
			}
70 223 adas
			\patrick{I also assume access to the following predicates:
71 223 adas
				\begin{itemize}
72 223 adas
					%   \item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
73 223 adas
					%   \item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$"
74 223 adas
					\item $\addtosequence(w,y,w')$. "$w'$ represents the sequence obtained by adding $y$ at the end of the sequence represented by $w$". Here we are referring to sequences which can be decoded with predicate $\beta$.
75 223 adas
					\end{itemize}}
76 223 adas
					In the following we will use the predicates $\zerobit (u,k)$, $\onebit(u,k)$, $\pref(k,x,y)$ which have been defined in Sect. \ref{sect:graphsbasicfunctions}.
77 223 adas
78 223 adas
					Suppose that $f$ is defined by predicative recursion on notation:
79 223 adas
					\[
80 223 adas
					\begin{array}{rcl}
81 223 adas
					f(0 , \vec u ; \vec x) & \dfn & g(\vec u ; \vec x) \\
82 223 adas
					f(\succ i u, \vec u ; \vec x) & \dfn & h_i( u , \vec u ; \vec x , f(u , \vec u ; \vec x))
83 223 adas
					\end{array}
84 223 adas
					\]
85 223 adas
86 223 adas
					\anupam{using $\beta(i,x,y)$ predicate for sequences: ``$i$th element of $x$ is $y$''. Provably total in $\arith^1$.}
87 223 adas
88 223 adas
					Suppose we have $\Sigma^\safe_i$ formulae $A_g (\vec u ; \vec x,y)$ and $A_{h_i} (u , \vec u ; \vec x , y , z)$ computing the graphs of $g$ and $h_i$ respectively, provably total in $\arith^i$.
89 223 adas
					We define $A_f (u ,\vec u ; \vec x , y)$ as,
90 223 adas
					\[
91 223 adas
					\exists w^\safe . \left(
92 223 adas
					\begin{array}{ll}
93 223 adas
					&
94 223 adas
					%Seq(z) \cand
95 223 adas
					\exists^{\safe} y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
96 223 adas
					%\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\
97 223 adas
					\cand & \forall^{\normal}  k < |u| . \exists^{\safe} y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
98 223 adas
					\end{array}
99 223 adas
					\right)
100 223 adas
					\]
101 223 adas
					where
102 223 adas
					\[
103 223 adas
					B (u , \vec u ; \vec x , y_k , y_{k+1}) = \left(
104 223 adas
					\begin{array}{ll}
105 223 adas
					& \zerobit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_0}(v,\vec u ; \vec x, y_k, y_{k+1}) )\\
106 223 adas
					\cand &  \onebit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_1}(v,\vec u ; \vec x, y_k, y_{k+1}) )
107 223 adas
					\end{array}
108 223 adas
					\right)
109 223 adas
					\]
110 223 adas
111 223 adas
					%which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$.
112 223 adas
113 223 adas
					To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$.
114 223 adas
					The base case, when $u=0$, is immediate from the totality of $A_g$, so for the inductive case we need to show:
115 223 adas
					\[
116 223 adas
					\exists y^\safe . A_f (u , \vec u ; \vec x , y)
117 223 adas
					\quad \seqar \quad
118 223 adas
					\exists z^\safe . A_f (s_i u, \vec u ; \vec x , z)
119 223 adas
					\]
120 223 adas
121 223 adas
					So let us assume $\exists y^\safe . A_f (u , \vec u ; \vec x , y) $. Then there exists $w$ such that $\safe(w)$ and
122 223 adas
					$A_f (u , \vec u ; \vec x , w) $.
123 223 adas
124 223 adas
					We know that there exists a $z$ such that $A_{h_i}(u,\vec u ; \vec x, y, z)$. Let then $w'$ be such that
125 223 adas
					$\addtosequence(w,z,w')$. Observe also that we have $\pref(|u|,s_i u,u)$
126 223 adas
127 223 adas
					So we have, for $k=|u|$:
128 223 adas
129 223 adas
					$$  \beta (k, w', y) \cand \beta (k+1 ,w', z)  \cand B (u , \vec u ; \vec x , y , z).$$
130 223 adas
131 223 adas
					and we can conclude that
132 223 adas
					\[
133 223 adas
					\exists w'^\safe . \left(
134 223 adas
					\begin{array}{ll}
135 223 adas
					&
136 223 adas
					%Seq(z) \cand
137 223 adas
					\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w' , y_0) ) \cand \beta(|u|+1, w',z ) \\
138 223 adas
					\cand & \forall k < |u|+1 . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
139 223 adas
					\end{array}
140 223 adas
					\right)
141 223 adas
					\]
142 223 adas
					So $\exists z^{\safe} . A_f (s_i u, \vec u ; \vec x , z)$ has been proven. So by induction we have proven $\forall^{\normal} u,
143 223 adas
					\forall^{\normal} \vec u, \exists^{\safe} y. A_f (u ,\vec u ; \vec x , y)$. Moreover one can also check the unicity of $y$, and so we have proved the required formula.
144 223 adas
145 223 adas
					\anupam{here need to `add' element to the computation sequence. Need to do this earlier in the paper.}
146 223 adas
147 223 adas
					\anupam{for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
148 223 adas
149 223 adas
					\paragraph*{Safe composition}
150 223 adas
					Now suppose that $f$ is defined by safe composition:
151 223 adas
					\[
152 223 adas
					f(\vec u ; \vec x) \quad \dfn \quad g( \vec h(\vec u;) ; \vec h' (\vec u ; \vec x) )
153 223 adas
					\]
154 223 adas
155 223 adas
					By the inductive hypothesis, let us suppose that we have $\Sigma^\safe_i $ definitions $A_g , A_{h_i} , A_{h_j'} $ of the graphs of $g , h_i , h_j'$ respectively, which are provably total etc.
156 223 adas
					In particular, by Raising, we have that $\forall \vec u^\normal . \exists v^\normal . A_{h_i} (\vec u , v)$.
157 223 adas
158 223 adas
					We define $A_f (\vec u , \vec x , z)$ defining the graph of $f$ as follows:
159 223 adas
					\[
160 223 adas
					\exists \vec v^\normal . \exists \vec y^\safe .
161 223 adas
					\left(
162 223 adas
					\bigwedge\limits_i A_{h_i} (\vec u , v_i)
163 223 adas
					\wedge
164 223 adas
					\bigwedge\limits_j A_{h_j'} (\vec u ; \vec x , y_j)
165 223 adas
					\wedge
166 223 adas
					A_g ( \vec v , \vec y , z )
167 223 adas
					\right)
168 223 adas
					\]
169 223 adas
					The provable totality of $A_f$ follows from simple first-order reasoning, mostly cuts and basic quantifier manipulations.
170 223 adas
171 223 adas
					\todo{elaborate}
172 223 adas
173 223 adas
					The proof of Thm \ref{thm:completeness} is thus completed.