Statistiques
| Révision :

root / CSL17 / soundness.tex @ 223

Historique | Voir | Annoter | Télécharger (8,78 ko)

1
\section{Soundness}
2
\label{sect:soundness}
3

    
4
The main result of this section is the following:
5

    
6
\begin{theorem}
7
	\label{thm:soundness}
8
	If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$.
9
\end{theorem}
10

    
11

    
12

    
13
The main problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions. 
14
For this we will use length-bounded witnessing, borrowing a similar idea from Bellantoni's previous work \cite{Bellantoni95}.
15

    
16

    
17
\begin{definition}
18
[Length bounded basic functions]
19
We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate:
20
\[
21
x \mode l = y \mode l
22
\]
23
which is definable by safe recursion on $l$:
24
\[
25
\begin{array}{rcl}
26
\eq (0 ; x,y) & \dfn & \equivfn (;\bit (0;x),\bit(0;y) ) \\
27
\eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y ))  )
28
\end{array}
29
\]
30
We also define length-bounded inequality as:
31
\[
32
\begin{array}{rcl}
33
\leqfn (0 ; x ,y) & \dfn & \cimp (; \bit (0;x), \bit (0;y) ) \\
34
\leqfn (\succ i l ; x,y) & \dfn & \orfn ( ; <(\bit (\succ i l ; x) , \bit(\succ i l ; y) ) , \andfn (; \equivfn (\bit (\succ i l ; x) , \bit(\succ i l ; y)) , \leqfn (l;x,y ) ) )
35
\end{array}
36
\]
37
\end{definition}
38

    
39
\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.}
40

    
41
Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems.
42

    
43
\begin{definition}
44
	[Length bounded characteristic functions]
45
	We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A(\vec u ; \vec x)$, as follows.
46
%	If $A$ is a $\Pi_{i}$ formula then:
47
	\[
48
	\begin{array}{rcl}
49
	\charfn{}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\
50
	\smallskip
51
	\charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\
52
	\smallskip
53
	\charfn{}{\neg A} (l, \vec u ; \vec x) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\
54
	\smallskip
55
	\charfn{}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\
56
	\smallskip
57
	\charfn{}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\
58
	\smallskip
59
	\charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases}
60
	1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\
61
	0 & \text{otherwise} 
62
	\end{cases} \\
63
	\smallskip
64
	\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & 
65
	\begin{cases}
66
	0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\
67
	1 & \text{otherwise}
68
	\end{cases}
69
	\end{array}
70
	\]
71
\end{definition}
72

    
73
\anupam{Above and below definitions need to be with respect to a typing of variables which terms respect.}
74

    
75

    
76
\begin{proposition}
77
	$\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$.
78
\end{proposition}
79

    
80
\begin{definition}
81
	[Length bounded witness function]
82
	We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$.
83
	For a $\Sigma^\safe_i$ formula $A$ with free variables amongst $(\vec u ; \vec x)$, with $\vec x$ occurring only hereditarily safe in terms, we define the \emph{length-bounded witness function} $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w)$ and its \emph{bounding polynomial} $b_A (l)$ as follows:
84
	\begin{itemize}
85
		\item If $A$ is $\Pi^\safe_{i-1}$ then $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) \dfn \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x )$.
86
		\item If $A$ is $B \cor C$ then 
87
		\[
88
		\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) 
89
		\quad \dfn \quad
90
		\orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )
91
		\]
92
		and we may set $b_A = O(b_B + b_C)$.
93
		\item Similarly if $A $ is $B \cand C$, but with $\andfn$ in place of $\orfn$.
94
%		\item If $A$ is $B \cand C$ then
95
%			\[
96
%			\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) 
97
%			\quad \dfn \quad
98
%			\andfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )
99
%			\]
100
%			and we may set $b_A = O(b_B + b_C)$.
101
		\item If $A$ is $\forall u \leq |t(\vec u;)| . B(u)$ then 
102
		\[
103
		\wit{\vec u ; \vec x}{A}
104
		\quad \dfn\quad
105
		\forall u\normal \leq |t|.
106
		\wit{u, \vec u ; \vec x}{B(u)} (l, u, \vec u ; \vec x , \beta( b_{B(t)} (l) , u ; w ) )
107
		\]
108
		appealing to Lemma~\ref{lem:sharply-bounded-recursion}, where we may set $b_A = O(b_{B(t)}^2 )$.
109
		\item Similarly if $A$ is $\exists u^\normal \leq |t(\vec u;)|. A'(u)$, but with $\exists u \leq |t|$ in place of $\forall u \leq |t|$.
110
		\item If $A$ is $\exists x^\safe . B(x) $ then
111
		\[
112
		\wit{\vec u ; \vec x}{A}
113
		\quad \dfn \quad
114
		\wit{\vec u ; \vec x , x}{B(x)} ( l, \vec u ; \vec x , \beta( b_{B} (l) , 0;w ) , \beta (q(l) , 1 ;w ))
115
		\]
116
		where $q$ is obtained by the polychecking and bounded minimisation lemmata for $\wit{\vec u ; \vec x , x}{B(x)}$.
117
		We may set $b_A = O(b_B + q )$.
118
	\end{itemize}
119
%	\[
120
%	\begin{array}{rcl}
121
%	\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
122
%	\smallskip
123
%	\wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
124
%	\smallskip
125
%	\wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
126
%	\smallskip
127
%	\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w )
128
%	\\
129
%	\smallskip
130
%	\wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & 
131
%	\forall u \leq |t(\vec u;)| . \wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) )
132
%	\end{array}
133
%	\]
134
%	\anupam{need length bounding for sharply bounded quantifiers}
135
\end{definition}
136

    
137
\anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.}
138

    
139
\anupam{sharply bounded case obtained by sharply bounded lemma}
140

    
141

    
142
\begin{proposition}
143
	If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A (\vec u \mode l ; \vec x \mode l)$ is true.
144
	\anupam{check statement, need proof-theoretic version?}
145
\end{proposition}
146

    
147
By the polychecking lemma, we can assume that such a $w$ is bounded by some polynomial in $l$.
148

    
149
In order to prove Thm.~\ref{thm:soundness} we need the following lemma:
150

    
151

    
152
\begin{lemma}
153
		[Proof interpretation]
154
		\label{lem:proof-interp}
155
	From a normal form \todo{define, prove exists} $\arith^i$ proof $\pi$ of a $\Sigma^\safe_i$ sequent $\normal(\vec u), \safe(\vec x) , \Gamma  \seqar \Delta$
156
	there are $\mubci{i-1}$ functions $\vec f^\pi (\vec u ; \vec x , w)$ (where $\vec f^\pi = (f^\pi_B)_{B\in\Delta}$) such that, for any $l, \vec u ; \vec x  , w$, we have:
157
	\[
158
%	\vec a^\nu = \vec u ,
159
%	\vec b^\sigma = \vec u, 
160
	\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1
161
	\quad \implies \quad
162
	\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B(\vec u \mode l ; \vec x \mode l, \vec w)) = 1
163
	\]
164
	\anupam{Need $\vec w \mode p(l)$ for some $p$.}
165
	\anupam{$l$ may occur freely in the programs $f^\pi_B$}
166
\end{lemma}
167

    
168

    
169
\todo{Make statement above proper, with all bounds and moduli. I cut the proof to the appendix, maybe add sketch if space.}
170

    
171
From this lemma we can readily prove the soundness result:
172
	
173
	\begin{proof}
174
		[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
175
		(watch out for dependence on $l$, try do without)
176
		
177
		Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of,
178
		\[
179
		\normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;)
180
		\]
181
		whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that:
182
		\[
183
		\vec u \mode l = \vec a \mode l
184
		\quad \implies \quad
185
		\wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1
186
		\]
187
		
188
		Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma.
189
	\end{proof}