root / CSL16 / appendix-free-cut-elim.tex @ 223
Historique | Voir | Annoter | Télécharger (28,47 ko)
1 |
\section{Proofs and further remarks for Sect.~\ref{sect:free-cut-elim}} |
---|---|
2 |
|
3 |
\paragraph*{Discussion on Dfn.~\ref{def:anchoredcut}} |
4 |
Our first idea would be to consider as anchored a cut whose cut-formulas $A$ in the two premises are both principal for their rule, and at least one of these rules is non-logical. Now, the problem with this tentative definition is that a rule (R) of $\mathcal T$ can contain several principal formulas (in $\Sigma'$, $\Delta'$) and so we would like to allow an anchored cut on each of these principal formulas. |
5 |
% Consider for instance the following derivation, where we have underlined principal formulas: |
6 |
Consider the following derivation, where principal formulas are underlined: |
7 |
\[ |
8 |
\vlderivation{ |
9 |
\vliin{\cut_2}{}{\seqar \Pi}{ |
10 |
\vliin{\cut_1}{}{\seqar C \land D}{ |
11 |
\vlin{\rigrul{\lor}}{}{ \seqar\underline{ A \lor B} }{\vlhy{\seqar A,B}} |
12 |
}{ |
13 |
\vlin{(R)}{}{ \underline{A\lor B} \seqar \underline{C\land D} }{ \vlhy{\Sigma \seqar \Delta} } |
14 |
} |
15 |
}{ |
16 |
\vlin{\lefrul{\land}}{}{ \underline{C\land D} \seqar \Pi }{\vlhy{C, D \seqar \Pi}} |
17 |
} |
18 |
} |
19 |
\] |
20 |
|
21 |
Here $cut_1$ is anchored in this sense, but not $cut_2$. This is why we need the more general definition of \emph{hereditarily principal formula}. |
22 |
|
23 |
|
24 |
\begin{proof} |
25 |
[Proof of Lemma~\ref{lem:hereditaryprincipalnonlogical}] |
26 |
Assume that $A$ is an occurrence of formula on the LHS of the sequent and hereditarily principal for a non-logical rule (R), then a direct ancestor of this formula is principal for (R) and thus by condition 4. $A$ cannot be of the form $?A'$. The other case is identical. |
27 |
\end{proof} |
28 |
|
29 |
Define the \textit{degree} of a formula as the number of logical connectives or quantifiers in it. Let us first state an easy building-block of the proof, which comes from standard linear logic: |
30 |
\begin{lemma}[Logical non-exponential cut-elimination steps]\label{lem:logical steps} |
31 |
Any cut $c$ whose cut-formulas $A$ are both principal formulas of logical rules distinct from $?$, $!$, $wk$, $cntr$ rules can be replaced in one step by cuts on formulas of strictly lower degree (0, 1 or 2 cuts). |
32 |
\end{lemma} |
33 |
\begin{proof} |
34 |
This is exactly as in plain linear logic. Just note that the case of a quantifier formula involves a substitution by a term $t$ throughout the proof, and this is where we need condition 3 on non-logical rules requiring that they are closed by substitution. |
35 |
\end{proof} |
36 |
|
37 |
Now we have all the necessary lemmas to proceed with the proof of the main theorem. |
38 |
\begin{proof}[Proof of Thm \ref{thm:free-cut-elim}] |
39 |
Given a cut rule $c$ in a proof $\pi$, we call \emph{degree} $\deg( c)$ the number of connectives and quantifiers of its cut-formula. Now the \emph{degree} of the proof $\deg( \pi)$ is the multiset of the degrees of its non-anchored formulas. The degrees will be compared with the multiset ordering. |
40 |
The demonstration proceeds by induction on the degree $\deg( \pi)$. For a given degree we proceed with a sub-induction on the \textit{height} $\height{\pi}$ of the proof. |
41 |
|
42 |
Consider a proof $\pi$ of non-null degree. We want to show how to reduce it to a proof of strictly lower degree. Consider a top-most non-anchored cut $c$ in $\pi$, that is to say such that there is no non-anchored cut above $c$. Let us call $A$ the cut-formula, and $(S_1)$ (resp. $(S_2)$) the rule above the left (resp. right) premise of $c$. |
43 |
\[ |
44 |
\vliinf{c \; \; \cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \vlinf{S_1}{}{\Gamma \seqar \Delta, A}{} }{\vlinf{S_2}{}{\Sigma, A \seqar \Pi}{}} |
45 |
\] |
46 |
Intuitively we proceed as follows: if $A$ is not hereditarily principal in one of its premises we will try to commute $c$ with the rule along its left premise $(S_1)$, and if it is not possible commute it with the rule along its right premise $(S_2)$, by using Lemmas \ref{lem:hereditaryprincipalnonlogical}, \ref{lem:standardcommutations} and \ref{lem:keycommutations}; if $A$ is hereditarily principal in both premises we proceed with a cut-elimination step, as in standard linear logic. For this second step, the delicate part is the elimination of exponential cuts, for which we use a big-step reduction; it works well because the contexts in the non-logical rules $(R)$ are marked with $!$ (resp. $?$) on the LHS (resp. RHS). |
47 |
|
48 |
So, let us distinguish the various cases: |
49 |
\begin{itemize} |
50 |
\item \textbf{First case}: the cut-formula $A$ on the LHS of $c$ is not hereditarily principal. |
51 |
|
52 |
\begin{itemize} |
53 |
\item Consider first the situation where $(S_1)$ is not one of the rules $(\rigrul{!})$, $(\lefrul{?})$, $(R)$. |
54 |
|
55 |
In this case the commutation of $c$ with $(S_1)$ can be done in the usual way, by using Lemma \ref{lem:standardcommutations}. Let us handle as an example the case where $(S_1)=(\rigrul{\laand})$. |
56 |
|
57 |
\[ |
58 |
\begin{array}{cc} |
59 |
& \vlderivation{ |
60 |
\vliin{c}{}{ \Gamma, \Sigma \seqar B_1\vlan B_2, \Delta, \Pi }{ \vliin{S_1=\rigrul{\vlan}}{}{\Gamma \seqar B_1\vlan B_2, \Delta, A}{ \vlhy{\Gamma \seqar B_1, \Delta, A} }{\vlhy{\Gamma \seqar B_2,\Delta, A}}}{ \vlhy{ \Sigma, A \seqar \Pi} } |
61 |
} \\ |
62 |
\noalign{\bigskip} |
63 |
\to\qquad\qquad |
64 |
& \vlderivation{ |
65 |
\vliin{\rigrul{\vlan}}{}{ \Gamma, \Sigma \seqar B_1\vlan B_2, \Delta, \Pi }{ |
66 |
\vliin{c_1}{}{\Gamma,\Sigma \seqar B_1, \Delta, \Pi }{ \vlhy{\Gamma \seqar B_1, \Delta, A} }{\vlhy{ \Sigma, A \seqar \Pi} } |
67 |
}{ |
68 |
\vliin{c_2}{}{\Gamma,\Sigma \seqar B_2, \Delta, \Pi }{ \vlhy{\Gamma \seqar B_2, \Delta, A} }{\vlhy{ \Sigma, A \seqar \Pi} } |
69 |
} |
70 |
} |
71 |
\end{array} |
72 |
\] |
73 |
|
74 |
|
75 |
Observe that here $c$ is replaced by two cuts $c_1$ and $c_2$. Call $\pi_i$ the sub-derivation of last rule $c_i$, for $i=1,2$. As for $i=1, 2$ we have |
76 |
$\deg{\pi_i}\leq \deg{\pi}$ and $\height{\pi_i}< \height{\pi}$ we can apply the induction hypothesis, and reduce $\pi_i$ to a proof $\pi'_i$ of same conclusion and with |
77 |
$\deg{\pi'_i} < \deg{\pi_i}$. Therefore by replacing $\pi_i$ by $\pi'_i$ for $i=1, 2$ we obtain a proof $\pi'$ such that $\deg{\pi'}<\deg{\pi}$. |
78 |
|
79 |
The case (S)=($\lefrul{\laor}$) is identical, and the other cases are simpler. % (see the Appendix for more examples). |
80 |
|
81 |
\item Consider now the case where $(S_1)$ is equal to $(\rigrul{!})$, $(\lefrul{?})$ or $(R)$. Let us also assume that the cut-formula is hereditarily principal in its RHS premise, because if this does not hold we can move to the second case below. |
82 |
|
83 |
First consider $(S_1)=(\rigrul{!})$. As $A$ is not principal in the conclusion of $(\rigrul{!})$ it is of the form $A=?A'$. By assumption we know that $A=?A'$ in the conclusion of $(S_2)$ is hereditarily principal on the LHS, so by Lemma \ref{lem:hereditaryprincipalnonlogical} it cannot be hereditarily principal for a non-logical rule, so by definition of hereditarily principal we deduce that $(S_2)$ is not an $(R)$ rule. It cannot be an $(\rigrul{!})$ rule either because then $?A'$ could not be a principal formula in its conclusion. Therefore the only possibility is that |
84 |
$(S_2)$ is an $(\lefrul{?})$ rule. So the RHS premise is of the shape $?A',!\Gamma' \seqar ?\Pi'$ and by Lemma \ref{lem:keycommutations} the commutation on the LHS is possible. We can conclude as previously. The case where $(S_1)=(\lefrul{?})$ is the same. |
85 |
|
86 |
Now consider the case where $(S_1)=(R)$. As $A$ is not hereditarily principal in the conclusion of $(R)$, it is a context formula and it is on the RHS, so by definition of $(R)$ rules it is the form $A=?A'$. So as before by Lemma \ref{lem:hereditaryprincipalnonlogical} we deduce that $(S_2)=(\lefrul{?})$, and so the RHS premise is of the shape $?A',!\Gamma' \seqar ?\Pi'$. By Lemma \ref{lem:keycommutations} the commutation on the LHS is possible, and so again we conclude as previously. |
87 |
\end{itemize} |
88 |
\item \textbf{Second case}: the cut-formulas on the LHS and RHS of $c$ are both not hereditarily principal. |
89 |
|
90 |
After the first case we are here left with the situation where $(S_1)$ is equal to $(\rigrul{!})$, $(\lefrul{?})$ or $(R)$. |
91 |
\begin{itemize} |
92 |
\item Consider the case where $(S_1)$=$(\rigrul{!})$, $(\lefrul{?})$, so $A$ is of the form $A=?A'$. All cases of commutation of $c$ with $(S_2)$ are as in standard linear logic, except if $(S_2)=(R)$. In this case though we cannot have $A=?A'$ because of the shape of rule $(R)$. So we are done. |
93 |
\item Consider $(S_1)=(R)$. Again as $A$ is not principal in the conclusion of $(S_1)$ and on the RHS of the sequent it is a context formula, and thus of the form $A=?A'$. As $?A'$ is not principal in the conclusion of $(S_2)$, it is thus a context formula on the LHS of sequent, and therefore $(S_2)$ is not a rule $(R)$. So $(S_2)$ is a logical rule. If it is not an $(\rigrul{!})$ or an $(\lefrul{?})$ it admits commutation with the cut, and we are done. If it is equal to $(\rigrul{!})$ or $(\lefrul{?})$ it cannot have $?A'$ as a context formula in the LHS of its conclusion, so these subcases do not occur. |
94 |
\end{itemize} |
95 |
|
96 |
|
97 |
\item \textbf{Third case}: the cut-formulas on the LHS and RHS of $c$ are both hereditarily principal. |
98 |
|
99 |
By assumption $c$ is non anchored, so none of the two cut-formulas is hereditarily principal for a non-logical rule $(R)$. We can deduce from that |
100 |
that the LHS cut-formula is principal for $(S_1)$ and the RHS cut-formula is principal for $(S_2)$. Call $\pi_1$ (resp. $\pi_2$) the subderivation |
101 |
of last rule $(S_1)$ (resp. $(S_2)$). |
102 |
|
103 |
Then we consider the following sub-cases, in order: |
104 |
\begin{itemize} |
105 |
\item \textbf{weakening sub-case}: this is the case when one of the premises of $c$ is a $wk$ rule. Without loss of generality assume that it is the left premise of $c$ which is conclusion of $\rigrul{\wk}$, with principal formula $A$. We eliminate the cut by keeping only the LHS proof $\pi_1$, removing the last cut $c$ and last $\rigrul{\wk}$ rule on $A$, and by adding enough |
106 |
$\rigrul{\wk}$, $\lefrul{\wk}$ rules to introduce all the new formulas in the final sequent. The degree has decreased. |
107 |
|
108 |
\item \textbf{exponential sub-case}: this is when one of the premises of $c$ is conclusion of a $cntr$, $\rigrul{?}$ or $\lefrul{!}$ rule on a formula $?A$ or $!A$, and the other one is not a conclusion of $\wk$. |
109 |
|
110 |
Assume without loss of generality that it is the right premise which is conclusion of $\lefrul{\cntr}$ or $\lefrul{!}$ on $!A$, and thus the only possibility for the left premise is to be conclusion of $\rigrul{!}$. This is rule $(S_1)$ on the picture, last rule of the subderivation $\pi_1$, and we denote its conclusion as $!\Gamma' \seqar ?\Delta', !A$. We will use here a global rewriting step. For that consider in $\pi_2$ all the top-most direct ancestors of the cut-formula $!A$, that is to say direct ancestors which do not have any more direct ancestors above. Let us denote them as $!A^{j}$ for $1\leq j \leq k$. Observe that each $!A^{j}$ is principal formula of a rule $\lefrul{!}$ or $\lefrul{wk}$. Denote by $\rho$ the subderivation |
111 |
of $\pi_2$ which has as leaves the sequents premises of these $\lefrul{!}$ or $\lefrul{wk}$ rules with conclusion containing $!A^{j}$. |
112 |
Let $\rho'$ be a derivation obtained from $\rho$ by renaming if necessary eigenvariables occurring in premises of rules $\lefrul{\exists}$, $\rigrul{\forall}$, $(R)$ so that none of them belongs to $FV(!\Gamma', ?\Delta')$, where we recall that $!\Gamma' \seqar ?\Delta',!A$ is the LHS premise of the cut $c$. |
113 |
Now, let $\pi'_1$ be the immediate subderivation of $\pi_1$, of conclusion $!\Gamma' \seqar ?\Delta',A$. We then define the derivation |
114 |
$\rho''$ obtained from $\rho'$ in the following way: |
115 |
\begin{itemize} |
116 |
\item add a cut $c_j$ with (a copy) of $\pi'_1$ on $A^j$ at each leaf which is premise of a rule $\lefrul{!}$; |
117 |
\item add to each sequent coming from $\rho'$ an additional context $!\Gamma'$ on the LHS and an additional context $?\Delta'$ on the RHS, and additional $wk$ rules to introduce these formulas below the $\lefrul{wk}$ rules on formulas $!A^{j}$; |
118 |
\item introduce suitable $\lefrul{cntr}$ and $\rigrul{cntr}$ rules after multiplicative binary rules $\rigrul{\land}$, $\lefrul{\lor}$ in such a way to replace $!\Gamma', !\Gamma'$ (resp. $?\Delta', ?\Delta'$) by $!\Gamma'$ (resp. $?\Delta'$). |
119 |
\end{itemize} |
120 |
|
121 |
It can be checked that $\rho''$ is a valid derivation, because all the conditions for context-sensitive rules $(\rigrul{\forall})$, $(\lefrul{\exists})$, $(\rigrul{!})$, $(\lefrul{?})$, $(R)$ are satisfied. In particular the rules $(\rigrul{!})$, $(\lefrul{?})$, $(R)$ are satisfied because the contexts have been enlarged with $!$ formulas on the LHS of the sequents ($!\Gamma'$) and ? formulas on the RHS. of the sequents ($?\Gamma'$). |
122 |
|
123 |
Now, let $\pi'$ be the derivation obtained from $\pi$ by removing the cut $c$ and replacing the subderivation $\rho$ by $\rho''$. The derivation $\pi'$ is a valid one, it has the same conclusion $!\Gamma', \Sigma \seqar ?\Delta', \Pi$ and with respect to $\pi$ we have replaced one non-anchored cut $c$ with at most $k$ ones $c_j$, but which are of strictly lower degree. So $\deg(\pi')<\deg(\pi)$ and we are done. |
124 |
|
125 |
|
126 |
\item \textbf{logical sub-case}: we are now left with the case where both premises of $c$ are conclusions of rules others than $?$, $!$, $wk$, $cntr$. We can thus apply Lemma \ref{lem:logical steps}. |
127 |
If one of the premises is an axiom $\lefrul{\bot}$, $\id$ or $\rigrul{\bot}$, then $\pi$ can be rewritten to a suitable proof $\pi'$ by removing $c$ and the axiom rule. Otherwise both premises introduce the same connective, either $\land$, $\lor$, $\laor$, $\laand$, $\forall$ or $\exists$. In each case a specific rewriting rule replaces the cut $c$ with one cut of strictly lower degree. |
128 |
%See the Appendix. |
129 |
\end{itemize} |
130 |
\end{itemize} |
131 |
\end{proof} |
132 |
|
133 |
|
134 |
%\begin{remark} |
135 |
%[Complexity] |
136 |
%The exponential sub-case replaces a cut of degree $d$ by at most $|\pi|$ cuts of degree $d-1$, and also at most squares the size of the proof. |
137 |
%\end{remark} |
138 |
|
139 |
%\section{Some cut-elimination cases} |
140 |
%We work in a one-sided calculus for full linear logic. When working in the affine setting we simply drop the condition that weakened formulae are $?$-ed. |
141 |
% |
142 |
%As well as all usual rules, we have the induction rule: |
143 |
%\[ |
144 |
%\vlinf{\indr}{(x \notin FV (\Gamma) )}{? \Gamma, A^\perp (0) , A(t)}{? \Gamma , A^\perp (x) , A(s x) } |
145 |
%\] |
146 |
% |
147 |
%We give all the various cut-reduction cases in the following section but first we give a simple cut-elimination argument. |
148 |
% |
149 |
%\subsection{A basic (free-)cut elimination argument} |
150 |
%We give an argument that easily scales to free-cut elimination, i.e.\ in the presence of non-logical rules. |
151 |
% |
152 |
%\newcommand{\anarrow}[2]{\overset{#1}{\underset{#2}{\longrightarrow}}} |
153 |
%\newcommand{\cutredlin}{\mathit{ma}} |
154 |
%\newcommand{\cutredexp}{exp} |
155 |
% |
156 |
%\begin{definition} |
157 |
% Let $\anarrow{}{\cutredexp}$ denote the reduction steps concerning exponential cuts, and $\anarrow{}{\cutredlin}$ be the set of cut-reduction steps concerning multiplicative and additive cuts. |
158 |
%\end{definition} |
159 |
% |
160 |
%\newcommand{\rk}{\mathsf{rk}} |
161 |
% \renewcommand{\deg}{\mathsf{deg}} |
162 |
%\begin{definition} |
163 |
% [Measures] |
164 |
% For a $\anarrow{}{\cutredlin}$-redex $r$, let its \emph{degree} $\deg( r)$ be the number of logical connectives or quantifiers in its cut-formula. For a proof $\pi$, its \emph{degree} $\deg( \pi)$ is the multiset of the degree of its redexes. |
165 |
%\end{definition} |
166 |
% |
167 |
%\begin{proposition} |
168 |
%If $\pi$ is not $\anarrow{}{\cutredlin}$-normal then there is a derivation $L:\pi \anarrow{*}{\cutredlin} \pi'$ such that $\deg(\pi')< \deg(\pi)$. |
169 |
%\end{proposition} |
170 |
%\begin{proof} |
171 |
% First let us show the statement in the special case that $\pi$ contains precisely one $\cut$-inference as its final step, by induction on $|\pi|$. Each commutative $\anarrow{}{\cutredlin}$-step results in us being able to apply the inductive hypothesis to smaller proofs,- in the case of $\vlan $ two smaller proofs. Each key $\anarrow{}{\cutredlin}$-case strictly reduces the degree of the proof. Consequently we can eventually transform $\pi$ to a proof $\pi'$ which has possibly several cuts of smaller degree, as required. |
172 |
% |
173 |
% Now to the general case, we simply apply the above procedure to the subproof above a topmost cut in $\pi$. |
174 |
%\end{proof} |
175 |
%\begin{corollary} |
176 |
% $\anarrow{}{\cutredlin}$ is weakly normalising. |
177 |
%\end{corollary} |
178 |
% |
179 |
% |
180 |
%\newcommand{\cntdown}{\mathit{cn}} |
181 |
%\begin{definition} |
182 |
% [Lazy contraction] |
183 |
% Let $\anarrow{}{\cntdown}$ comprise of the following reduction steps: |
184 |
% \begin{enumerate} |
185 |
% \item The commuting steps, |
186 |
% \[ |
187 |
% \vlderivation{ |
188 |
% \vlin{\rho}{}{\Gamma', ?A, }{ |
189 |
% \vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ? A, ? A}} |
190 |
% } |
191 |
% } |
192 |
% \quad\to \quad |
193 |
% \vlderivation{ |
194 |
% \vlin{\cntr}{}{\Gamma', ?A}{ |
195 |
% \vlin{\rho}{}{\Gamma', ?A, ?A}{\vlhy{\Gamma, ? A, ? A}} |
196 |
% } |
197 |
% } |
198 |
% \] |
199 |
% for each unary rule $\rho$. |
200 |
% \item |
201 |
% The key steps: |
202 |
% \[ |
203 |
% \begin{array}{rcl} |
204 |
% \vlderivation{ |
205 |
% \vlin{\cntr}{}{\Gamma, ?A}{ |
206 |
% \vlin{\wk}{}{\Gamma, ?A, ?A}{\vlhy{\Gamma, ?A}} |
207 |
% } |
208 |
% } |
209 |
% \quad &\to & \quad |
210 |
% \Gamma, ?A |
211 |
%% \] |
212 |
%% and |
213 |
%% \[ |
214 |
%\\ |
215 |
%\noalign{\smallskip} |
216 |
% \vlderivation{ |
217 |
% \vlin{\wk}{}{\Gamma, ?A, ?A}{ |
218 |
% \vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ?A, ?A}} |
219 |
% } |
220 |
% } |
221 |
% \quad &\to& \quad |
222 |
% \Gamma, ?A, ?A |
223 |
% \end{array} |
224 |
% \]. |
225 |
%\item The commuting steps, |
226 |
%\[ |
227 |
% \vlderivation{ |
228 |
% \vliin{\rho}{}{\Gamma ,?A}{ |
229 |
% \vlin{\cntr}{}{\Gamma_1, ?A}{\vlhy{\Gamma_1, ?A, ?A}} |
230 |
% }{\vlhy{\Gamma_2}} |
231 |
% } |
232 |
% \quad \to \quad |
233 |
% \vlderivation{ |
234 |
% \vlin{\cntr}{}{\Gamma, ?A}{ |
235 |
% \vliin{\rho}{}{\Gamma,?A, ?A}{\vlhy{\Gamma_1, ?A, ?A}}{ \vlhy{\Gamma_2} } |
236 |
% } |
237 |
% } |
238 |
%\] |
239 |
%%\[ |
240 |
%%\begin{array}{rcl} |
241 |
%% \vlderivation{ |
242 |
%% \vliin{\land}{}{\Gamma, \Delta, ?A, B\land C}{ |
243 |
%% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
244 |
%% }{\vlhy{\Delta, C}} |
245 |
%% } |
246 |
%% \quad &\to &\quad |
247 |
%% \vlderivation{ |
248 |
%% \vlin{\cntr}{}{\Gamma, \Delta, ?A, B\land C}{ |
249 |
%% \vliin{\land}{}{\Gamma, \Delta, ?A, ?A, B\land C}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, C} } |
250 |
%% } |
251 |
%% } |
252 |
%%% \] |
253 |
%%% |
254 |
%%% \[ |
255 |
%%\\ |
256 |
%%\noalign{\smallskip} |
257 |
%% \vlderivation{ |
258 |
%% \vliin{\cut}{}{\Gamma, \Delta, ?A}{ |
259 |
%% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
260 |
%% }{\vlhy{\Delta, \lnot{B}}} |
261 |
%% } |
262 |
%% \quad &\to& \quad |
263 |
%% \vlderivation{ |
264 |
%% \vlin{\cntr}{}{\Gamma, \Delta, ?A}{ |
265 |
%% \vliin{\cut}{}{\Gamma, \Delta, ?A, ?A}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, \lnot{B}} } |
266 |
%% } |
267 |
%% } |
268 |
%%\end{array} |
269 |
%%\] |
270 |
%for each binary rule $\rho \in \{ \land, \cut \}$. |
271 |
%\item The commuting step: |
272 |
% \[ |
273 |
% \vlderivation{ |
274 |
% \vliin{\vlan}{}{\Gamma, ?A, B\vlan C}{ |
275 |
% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
276 |
% }{\vlhy{\Gamma, ?A, B}} |
277 |
% } |
278 |
% \quad \to \quad |
279 |
% \vlderivation{ |
280 |
% \vlin{\cntr}{}{\Gamma, ?A, B\vlan C}{ |
281 |
% \vliin{\vlan}{}{\Gamma, ?A, ?A, B\vlan C}{\vlhy{\Gamma, ?A, ?A, B}}{ |
282 |
% \vlin{\wk}{}{\Gamma, ?A, ?A, C}{\vlhy{\Gamma, ?A, C}} |
283 |
% } |
284 |
% } |
285 |
% } |
286 |
% \] |
287 |
% \end{enumerate} |
288 |
% For binary rules: |
289 |
% |
290 |
%\end{definition} |
291 |
%\begin{proposition} |
292 |
% $\anarrow{}{\cntdown}$ is weakly normalising |
293 |
% , modulo $\cntr$-$\cntr$ redexes, |
294 |
% and degree-preserving. |
295 |
% If $\pi$ is $\anarrow{}{\cutredlin}$-normal and $\pi \downarrow_\cntdown \pi'$, then so is $\pi'$. |
296 |
%\end{proposition} |
297 |
%\begin{proof} |
298 |
% By induction on the number of redexes in a proof. Start with bottommost redex, by induction on number of inference steps beneath it. |
299 |
%\end{proof} |
300 |
% |
301 |
%\begin{remark} |
302 |
% Only weakly normalising since $\cntr$ can commute with $\cntr$, allowing cycles. |
303 |
%\end{remark} |
304 |
% |
305 |
%\begin{proposition} |
306 |
% If $\pi$ is $\anarrow{}{\cutredexp}$-reducible but $\anarrow{}{\cutredlin}$- and $\anarrow{}{\cntdown}$-normal then there is a derivation $H:\pi \anarrow{*}{\cutredexp} \pi'$ such that $\deg (\pi')<\deg(\pi)$. |
307 |
%\end{proposition} |
308 |
% |
309 |
% |
310 |
% |
311 |
%\subsection{Base cases} |
312 |
% |
313 |
%\[ |
314 |
%\vlderivation{ |
315 |
%\vliin{\cut}{}{ \Gamma,a }{ \vlhy{\Gamma,a} }{ \vlin{\id}{}{a,a^\bot}{ \vlhy{} } } |
316 |
%} |
317 |
%\quad\to\quad |
318 |
%\vlderivation{ |
319 |
%\Gamma,a |
320 |
%} |
321 |
%\] |
322 |
% |
323 |
%\[ |
324 |
%\vlderivation{ |
325 |
%\vliin{\cut}{}{\Gamma}{ \vlin{\bot}{}{ \Gamma,\bot }{ \vlhy{\Gamma} } }{ \vlin{1}{}{1}{ \vlhy{} } } |
326 |
%} |
327 |
%\quad\to\quad |
328 |
%\vlderivation{ |
329 |
%\Gamma |
330 |
%} |
331 |
%\] |
332 |
% |
333 |
%\[ |
334 |
%\vlderivation{ |
335 |
%\vliin{\cut}{}{ \Gamma,\Delta,\top }{ \vlin{\top}{}{ \Gamma,\top,0 }{ \vlhy{} } }{ \vlhy{\Delta , \top } } |
336 |
%} |
337 |
%\quad\to\quad |
338 |
%\vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
339 |
%\] |
340 |
% |
341 |
%\subsection{Commutative cases} |
342 |
%These are the cases when the principal formula of a step is not active for the cut-step below. |
343 |
% |
344 |
%\begin{enumerate} |
345 |
%\item The cut-step is immediately preceded by an initial step. Note that only the case for $\top$ applies: |
346 |
%\[ |
347 |
%\vlderivation{ |
348 |
%\vliin{\cut}{}{\Gamma,\Delta,\top}{ |
349 |
%\vlin{\top}{ }{ \Gamma,\top,A }{ \vlhy{} } |
350 |
% }{ \vlhy{\Delta,A^\bot } } |
351 |
%} |
352 |
%\quad\to\quad |
353 |
%\vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
354 |
%\] |
355 |
%%Notice that this commutation eliminates the cut entirely and preserves the height of all cuts below. |
356 |
%\item\label{CaseCommOneStep} A cut-step is immediately preceded by a step $\rho$ with exactly one premiss: |
357 |
%\[ |
358 |
%\vlderivation{ |
359 |
%\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
360 |
%} |
361 |
%\] |
362 |
%We have three subcases: |
363 |
%\begin{enumerate} |
364 |
%\item\label{subcase:unary-commutation-vanilla} |
365 |
%%$\Delta$ consists of only $?$-ed formulae or |
366 |
%If $\rho \notin \{! , \indr \}$ then we can simply permute as follows: |
367 |
%\begin{equation} |
368 |
%\label{eqn:com-case-unary-simple} |
369 |
%\vlderivation{ |
370 |
%\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
371 |
%} |
372 |
%\quad \to \quad |
373 |
%\vlderivation{ |
374 |
%\vlin{\rho}{}{\Gamma',\Delta}{ |
375 |
%\vliin{\cut}{}{\Gamma,\Delta}{\vlhy{\Gamma,A}}{\vlhy{A^\bot , \Delta}} |
376 |
%} |
377 |
%} |
378 |
%\end{equation} |
379 |
%(If $\rho$ was $\forall$ then we might need to rename some free variables in $\Delta$.) |
380 |
%\item $\rho $ is a $!$-step. Therefore $\Gamma$ has the form $? \Sigma , B$ and $A$ has the form $?C$, yielding the following situation: |
381 |
%\[ |
382 |
%\vlderivation{ |
383 |
%\vliin{\cut}{}{? \Sigma, !B, \Delta }{ |
384 |
%\vlin{!}{}{? \Sigma, !B , ?C}{\vlhy{?\Sigma , B , ?C} } |
385 |
%}{ |
386 |
%\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
387 |
%} |
388 |
%} |
389 |
%\] |
390 |
%Now, if $!C^\perp$ is principle for $\rho'$ then $\rho'\in \{! , \indr\}$ and so $\Delta $ must be $?$-ed; in this case we are able to apply the transformation \eqref{eqn:com-case-unary-simple}. Otherwise $A^\perp$ is not principal for $\rho'$ and so $\rho' \notin \{! , \indr \}$, which means we can apply \ref{subcase:unary-commutation-vanilla} along this side of the subproof. |
391 |
%\item $\rho$ is a $\indr$-step. Therefore $\Gamma$ has the form $? \Sigma , B^\perp(x), B(s x) $ and $A$ has the form $?C$, and the argument is similar to the case above. |
392 |
%% yielding the following situation: |
393 |
%%\[ |
394 |
%%\vlderivation{ |
395 |
%% \vliin{\cut}{}{? \Sigma, B^\perp (0) , B(t), \Delta }{ |
396 |
%% \vlin{\indr}{}{? \Sigma, B^\perp (0) , B(t) , ?C}{\vlhy{?\Sigma , B^\perp(x) , B(s x) , ?C} } |
397 |
%% }{ |
398 |
%% \vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
399 |
%%} |
400 |
%%} |
401 |
%%\] |
402 |
%\end{enumerate} |
403 |
% |
404 |
% |
405 |
% |
406 |
%\item A cut-step is immediately preceded by a $\vlte $-step: |
407 |
%\[ |
408 |
%\vlderivation{ |
409 |
%\vliin{\cut}{}{\Gamma,\Delta,\Sigma,A\vlte B }{ |
410 |
%\vliin{\vlte}{}{\Gamma,\Delta,A\vlte B,C }{\vlhy{\Gamma,A,C}}{\vlhy{\Delta,B}} |
411 |
%}{\vlhy{ \Sigma , C^\bot }} |
412 |
%} |
413 |
%\quad\to\quad |
414 |
%\vlderivation{ |
415 |
%\vliin{\vlte}{}{\Gamma,\Delta,\Sigma,A\vlte B}{ |
416 |
%\vliin{\cut}{}{\Gamma,\Sigma,A}{\vlhy{\Gamma,A,C}}{\vlhy{\Sigma,C^\bot}} |
417 |
%}{\vlhy{\Delta,B}} |
418 |
%} |
419 |
%\] |
420 |
%%Notice that this commutation might increase the height of any cuts below along the right branch of the indicated cut, but decreases the height along the left branch. |
421 |
%\item\label{CommCaseAmpersand} A cut-step is immediately preceded by a $\vlan$-step. |
422 |
%\[ |
423 |
%\vlderivation{ |
424 |
%\vliin{\cut}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} } |
425 |
%} |
426 |
%\quad\to\quad |
427 |
%\vlderivation{ |
428 |
%\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{ |
429 |
%\vliin{cut}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } } |
430 |
%}{ |
431 |
%\vliin{ \cut }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} } |
432 |
%} |
433 |
%} |
434 |
%\] |
435 |
%\item (No rule for cuts commuting with cuts.) |
436 |
%%A cut-step is immediately preceded by another cut-step: |
437 |
%\[ |
438 |
%\vlderivation{ |
439 |
% \vliin{\cut}{}{\Gamma, \Delta, \Sigma}{ |
440 |
% \vliin{\cut}{}{\Gamma, \Delta, B}{\vlhy{\Gamma, A}}{\vlhy{\Delta, \lnot{A}, B}} |
441 |
% }{\vlhy{\Sigma, \lnot{B}}} |
442 |
% } |
443 |
% \quad\to\quad |
444 |
%\vlderivation{ |
445 |
% \vliin{\cut}{}{\Gamma, \Delta, \Sigma}{\vlhy{\Gamma, A}}{ |
446 |
% \vliin{\cut}{}{\Delta, \Sigma, \lnot{A}}{\vlhy{\Delta, \lnot{A}, B}}{\vlhy{\Sigma, \lnot{B}}} |
447 |
% } |
448 |
% } |
449 |
%\] |
450 |
%\end{enumerate} |
451 |
% |
452 |
% |
453 |
% |
454 |
%\subsection{Key cases: structural steps} |
455 |
%%[THIS SECTION MIGHT NOT BE NECESSARY] |
456 |
%We attempt to permute cuts on exponential formulae over structural steps whose principal formula is active for the cut. |
457 |
% |
458 |
%We use the commutative case \ref{CaseCommOneStep} to assume that the topmost cut-step in a sequence has already been permuted up to its origin on the $!$-side. |
459 |
% |
460 |
%We have two cases. |
461 |
%\begin{enumerate} |
462 |
%\item\label{StructStepCont} The structural step preceding the cut is a weakening: |
463 |
%\[ |
464 |
%\vlderivation{ |
465 |
%\vliin{\cut}{}{?\Gamma,\Delta}{ \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } }{ \vlin{w}{}{ ?A^\bot }{ \vlhy{\Delta } } } |
466 |
%} |
467 |
%\quad\to\quad |
468 |
%\vlinf{w}{}{?\Gamma,\Delta}{ \Delta } |
469 |
%\] |
470 |
%%\item The structural step preceding the cut is a contraction: |
471 |
%%\[ |
472 |
%%\vlderivation{ |
473 |
%%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
474 |
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
475 |
%%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
476 |
%%} |
477 |
%%\quad\to\quad |
478 |
%%\vlderivation{ |
479 |
%%\vliq{c}{}{?\Gamma, \Delta}{ |
480 |
%%\vliin{\cut}{}{?\Gamma, ?\Gamma,\Delta }{ |
481 |
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
482 |
%%}{ |
483 |
%%\vliin{\cut}{}{?\Gamma,?A^\bot , \Delta }{ |
484 |
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
485 |
%%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
486 |
%%} |
487 |
%%} |
488 |
%%} |
489 |
%%\] |
490 |
%%OR use a multicut: |
491 |
%%\[ |
492 |
%%\vlderivation{ |
493 |
%%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
494 |
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
495 |
%%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
496 |
%%} |
497 |
%%\quad\to\quad |
498 |
%%\vlderivation{ |
499 |
%%\vliin{\multicut}{}{?\Gamma,?A^\bot , \Delta }{ |
500 |
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
501 |
%%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
502 |
%%} |
503 |
%%\] |
504 |
%\item The structural step preceding a cut is a contraction: |
505 |
%\[ |
506 |
%\vlderivation{ |
507 |
% \vliin{\cut}{}{?\Gamma, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
508 |
% \vlin{\cntr}{}{ ?A,\Sigma }{ \vlhy{ ?A,?A,\Sigma } } |
509 |
% } |
510 |
%} |
511 |
%\quad\to\quad |
512 |
%\vlderivation{ |
513 |
% \vliq{\cntr}{}{ ?\Gamma,\Sigma }{ |
514 |
% \vliin{\cut}{}{ ?\Gamma,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
515 |
% \vliin{\cut}{}{ ?A,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,\Sigma } } |
516 |
% } |
517 |
% } |
518 |
%} |
519 |
%\] |
520 |
%%\item The structural step preceding a cut is a parallel contraction: |
521 |
%%\[ |
522 |
%%\vlderivation{ |
523 |
%%\vliin{\cut}{}{?\Gamma,?\Delta, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
524 |
%%\vlin{}{}{ ?A,?\Delta,\Sigma }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
525 |
%%} |
526 |
%%} |
527 |
%%\quad\to\quad |
528 |
%%\vlderivation{ |
529 |
%%\vlin{}{}{ ?\Gamma,?\Delta,\Sigma }{ |
530 |
%%\vliin{\cut}{}{ ?\Gamma,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
531 |
%%\vliin{\cut}{}{ ?A,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
532 |
%%} |
533 |
%%} |
534 |
%%} |
535 |
%%\] |
536 |
%\end{enumerate} |
537 |
% |
538 |
%\subsection{Key cases: logical steps} |
539 |
%Finally, once all cuts have been permuted maximally on both sides, we have the cases when the cut-formula is principal for a preceding logical step on both sides. We have three cases, one for every pair of connectives. |
540 |
%\begin{enumerate} |
541 |
%\item The cut-formula is multiplicative: |
542 |
%\[ |
543 |
%\vlderivation{ |
544 |
%\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ |
545 |
%\vliin{\vlte}{}{ \Gamma,\Delta,A\vlte B }{ \vlhy{\Gamma,A} }{ \vlhy{\Delta,B} } |
546 |
%}{ \vlin{\vlpa}{}{ \Sigma, A^\bot \vlpa B^\bot }{ \vlhy{\Sigma , A^\bot , B^\bot} } } |
547 |
%} |
548 |
%\quad\to\quad |
549 |
%\vlderivation{ |
550 |
%\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ \vlhy{\Gamma,A} }{ |
551 |
%\vliin{\cut}{}{ \Delta,\Sigma,A^\bot }{ \vlhy{\Delta,B} }{ \vlhy{\Sigma , A^\bot,B^\bot } } |
552 |
%} |
553 |
%} |
554 |
%\] |
555 |
%\item The cut-formula is additive, |
556 |
%\[ |
557 |
%\vlderivation{ |
558 |
%\vliin{\cut}{}{ \Gamma,\Delta }{ |
559 |
%\vliin{\vlan}{}{ \Gamma,A\vlan B }{ \vlhy{\Gamma,A} }{ \vlhy{\Gamma,B} } |
560 |
% }{ \vlin{\vlor}{}{ \Delta,A^\bot\vlor B^\bot }{ \vlhy{\Delta, A^\bot } } } |
561 |
%} |
562 |
%\quad\to\quad |
563 |
%\vliinf{\cut}{}{ \Gamma,\Delta }{ \Gamma,A }{ \Delta,A^\bot } |
564 |
%\] |
565 |
%where the case for the other $\vlor$-rule is symmetric. |
566 |
%\item The cut-formula is exponential. |
567 |
%\[ |
568 |
%\vlderivation{ |
569 |
%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
570 |
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
571 |
%}{ |
572 |
%\vlin{?}{}{ \Delta,?A^\bot }{ \vlhy{\Delta, A^\bot } } |
573 |
%} |
574 |
%} |
575 |
%\quad\to\quad |
576 |
%\vliinf{\cut}{}{ ?\Gamma,\Delta }{ ?\Gamma,A }{ \Delta,A^\bot } |
577 |
%\] |
578 |
%\item The cut-formula is quantified. |
579 |
%\[ |
580 |
%\vlderivation{ |
581 |
% \vliin{\cut}{}{\Gamma, \Delta}{ |
582 |
% \vlin{\forall}{}{\Gamma, \forall x. A(x)}{\vltr{\pi(a)}{\Gamma, A(a)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}} |
583 |
% }{ |
584 |
% \vlin{\exists}{}{\Delta, \exists x . \lnot{A}(x)}{\vlhy{\Delta, \lnot{A}(t)}} |
585 |
% } |
586 |
% } |
587 |
% \quad \to \quad |
588 |
% \vlderivation{ |
589 |
% \vliin{\cut}{}{\Gamma, \Delta}{ |
590 |
% \vltr{\pi(t)}{\Gamma, A(t)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
591 |
% }{\vlhy{\Delta, \lnot{A}(t)}} |
592 |
% } |
593 |
%\] |
594 |
%\end{enumerate} |
595 |
|